1
|
Brown J, Naumann RW, Seckl MJ and Schink
J: 15 years of progress in gestational trophoblastic disease:
Scoring, standardization, and salvage. Gynecol Oncol. 144:200–207.
2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Berkowitz RS and Goldstein DP: Current
advances in the management of gestational trophoblastic disease.
Gynecol Oncol. 128:3–5. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ryu N, Ogawa M, Matsui H, Usui H and Shozu
M: The clinical characteristics and early detection of postpartum
choriocarcinoma. Int J Gynecol Cancer. 25:926–930. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Alazzam M, Tidy J, Osborne R, Coleman R,
Hancock BW and Lawrie TA: Chemotherapy for resistant or recurrent
gestational trophoblastic neoplasia. Cochrane Database Syst Rev.
12:CD0088912012.PubMed/NCBI
|
5
|
Essel KG, Bruegl A, Gershenson DM,
Ramondetta LM, Naumann RW and Brown J: Salvage chemotherapy for
gestational trophoblastic neoplasia: Utility or futility? Gynecol
Oncol. 146:74–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wong SY, Ngan HY, Chan CC and Cheung AN:
Apoptosis in gestational trophoblastic disease is correlated with
clinical outcome and Bcl-2 expression but not Bax expression. Mod
Pathol. 12:1025–1033. 1999.PubMed/NCBI
|
7
|
Chiu PM, Ngan YS, Khoo US and Cheung AN:
Apoptotic activity in gestational trophoblastic disease correlates
with clinical outcome: Assessment by the caspase-related M30
CytoDeath antibody. Histopathology. 38:243–249. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fong PY, Xue WC, Ngan HY, Chan KY, Khoo
US, Tsao SW, Chiu PM, Man LS and Cheung AN: Mcl-1 expression in
gestational trophoblastic disease correlates with clinical outcome:
A differential expression study. Cancer. 103:268–276. 2005.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Mak VC, Lee L, Siu MK, Wong OG, Lu X, Ngan
HY, Wong ES and Cheung AN: Downregulation of ASPP1 in gestational
trophoblastic disease: Correlation with hypermethylation, apoptotic
activity and clinical outcome. Mod Pathol. 24:522–532. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Braga A, Maesta I, Rocha Soares R, Elias
KM, Custódio Domingues MA, Barbisan LF and Berkowitz RS: Apoptotic
index for prediction of postmolar gestational trophoblastic
neoplasia. Am J Obstet Gynecol. 215:336.e1–336.e12. 2016.
View Article : Google Scholar
|
11
|
Wang TH and Wang HS: Gestational
trophoblastic diseases: Current trends and perspectives. J Formos
Med Assoc. 94:449–457. 1995.PubMed/NCBI
|
12
|
Patwardhan GA, Beverly LJ and Siskind LJ:
Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr.
48:153–168. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jin Z and El-Deiry WS: Overview of cell
death signaling pathways. Cancer Biol Ther. 4:139–163. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Goldar S, Khaniani MS, Derakhshan SM and
Baradaran B: Molecular mechanisms of apoptosis and roles in cancer
development and treatment. Asian Pac J Cancer Prev. 16:2129–2144.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kroemer G, Dallaporta B and Resche-Rigon
M: The mitochondrial death/life regulator in apoptosis and
necrosis. Annu Rev Physiol. 60:619–642. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang W, Chen Y, Li B and Gao S:
DBA-induced caspase-3-dependent apoptosis occurs through
mitochondrial translocation of cyt-c in the rat hippocampus. Mol
Biosyst. 13:1863–1873. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang F, Yu X, Liu X, Zhou T, Nie T, Cheng
M, Liu H, Dai M and Zhang B: ABT-737 potentiates cisplatin-induced
apoptosis in human osteosarcoma cells via the mitochondrial
apoptotic pathway. Oncol Rep. 38:2301–2308. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chipuk JE, Moldoveanu T, Llambi F, Parsons
MJ and Green DR: The BCL-2 family reunion. Mol Cell. 37:299–310.
2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sheikh BY, Sarker MMR, Kamarudin MNA and
Ismail A: Prophetic medicine as potential functional food elements
in the intervention of cancer: A review. Biomed Pharmacother.
95:614–648. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liggins J, Mulligan A, Runswick S and
Bingham SA: Daidzein and genistein content of cereals. Eur J Clin
Nutr. 56:961–966. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Adjakly M, Ngollo M, Boiteux JP, Bignon
YJ, Guy L and Bernard-Gallon D: Genistein and daidzein: Different
molecular effects on prostate cancer. Anticancer Res. 33:39–44.
2013.PubMed/NCBI
|
22
|
Jin S, Zhang QY, Kang XM, Wang JX and Zhao
WH: Daidzein induces MCF-7 breast cancer cell apoptosis via the
mitochondrial pathway. Ann Oncol. 21:263–268. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tang S, Hu J, Meng Q, Dong X, Wang K, Qi
Y, Chu C, Zhang X and Hou L: Daidzein induced apoptosis via
down-regulation of Bcl-2/Bax and triggering of the mitochondrial
pathway in BGC-823 cells. Cell Biochem Biophys. 65:197–202. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Park HJ, Jeon YK, You DH and Nam MJ:
Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2
family in human hepatic cancer cells. Food Chem Toxicol.
60:542–549. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lo YL: A potential daidzein derivative
enhances cytotoxicity of epirubicin on human colon adenocarcinoma
Caco-2 cells. Int J Mol Sci. 14:158–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Liang XL, Li M, Li J and Wang XL: Equol
induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells
through the intrinsic pathway and the endoplasmic reticulum stress
pathway. Anticancer Drugs. 25:633–640. 2014.PubMed/NCBI
|
27
|
Jeschke U, Briese V, Richter DU, Bruer G,
Plessow D, Waldschläger J, Mylonas I and Friese K: Effects of
phytoestrogens genistein and daidzein on production of human
chorionic gonadotropin in term trophoblast cells in vitro. Gynecol
Endocrinol. 21:180–184. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zheng W, Sun R, Yang L, Zeng X, Xue Y and
An R: Daidzein inhibits choriocarcinoma proliferation by arresting
cell cycle at G1 phase through suppressing ERK pathway in vitro and
in vivo. Oncol Rep. 38:2518–2524. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bruce S and Sorosky J: Gestational
trophoblastic disease. StatPearls. StatPearls Publishing StatPearls
Publishing LLC.; Treasure Island (FL): 2017
|
30
|
Seckl MJ, Sebire NJ and Berkowitz RS:
Gestational trophoblastic disease. Lancet. 376:717–729. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Li HW, Tsao SW and Cheung AN: Current
understandings of the molecular genetics of gestational
trophoblastic diseases. Placenta. 23:20–31. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Laurenz R, Tumbalam P, Naeve S and Thelen
KD: Determination of isoflavone (genistein and daidzein)
concentration of soybean seed as affected by environment and
management inputs. J Sci Food Agric. 97:3342–3347. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jin X, Sun J, Yu B, Wang Y, Sun WJ, Yang
J, Huang SH and Xie WL: Daidzein stimulates osteogenesis
facilitating proliferation, differentiation, and antiapoptosis in
human osteoblast-like MG-63 cells via estrogen receptor-dependent
MEK/ERK and PI3K/Akt activation. Nutr Res. 42:20–30. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bhattarai K, Adhikari S, Fujitani M and
Kishida T: Dietary daidzein, but not genistein, has a
hypocholesterolemic effect in non-ovariectomized and ovariectomized
female Sprague-Dawley rats on a cholesterol-free diet. Biosci
Biotechnol Biochem. 81:1805–1813. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Koo J, Cabarcas-Petroski S, Petrie JL,
Diette N, White RJ and Schramm L: Induction of proto-oncogene BRF2
in breast cancer cells by the dietary soybean isoflavone daidzein.
BMC Cancer. 15:9052015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu Y, Xu H, Li M, Gao Z, Huang J, Liu L,
Huang X and Li Y: Daidzein impairs Leydig cell testosterone
production and Sertoli cell function in neonatal mouse testes: An
in vitro study. Mol Med Rep. 14:5325–5333. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang Q, Feng H, Qluwakemi B, Wang J, Yao
S, Cheng G, Xu H, Qiu H, Zhu L and Yuan M: Phytoestrogens and risk
of prostate cancer: An updated meta-analysis of epidemiologic
studies. Int J Food Sci Nutr. 68:28–42. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu X, Suzuki N, Santosh Laxmi YR, Okamoto
Y and Shibutani S: Anti-breast cancer potential of daidzein in
rodents. Life Sci. 91:415–419. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Han BJ, Li W, Jiang GB, Lai SH, Zhang C,
Zeng CC and Liu YJ: Effects of daidzein in regards to cytotoxicity
in vitro, apoptosis, reactive oxygen species level, cell cycle
arrest and the expression of caspase and Bcl-2 family proteins.
Oncol Rep. 34:1115–1120. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
He Y, Wu X, Cao Y, Hou Y, Chen H, Wu L, Lu
L, Zhu W and Gu Y: Daidzein exerts anti-tumor activity against
bladder cancer cells via inhibition of FGFR3 pathway. Neoplasma.
63:523–531. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Szliszka E and Krol W: Soy isoflavones
augment the effect of TRAIL-mediated apoptotic death in prostate
cancer cells. Oncol Rep. 26:533–541. 2011.PubMed/NCBI
|
42
|
Vilela FM, Syed DN, Chamcheu JC,
Calvo-Castro LA, Fortes VS, Fonseca MJ and Mukhtar H:
Biotransformed soybean extract (BSE) inhibits melanoma cell growth
and viability in vitro: Involvement of nuclear factor-kappa B
signaling. PLoS One. 9:e1032482014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li J, Zhao L, Zhao X, Wang P, Liu Y and
Ruan J: Foxo1 attenuates NaF-induced apoptosis of LS8 cells through
the JNK and mitochondrial pathways. Biol Trace Elem Res.
181:104–111. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Shi XK, Bian XB, Huang T, Wen B, Zhao L,
Mu HX, Fatima S, Fan BM, Bian ZX, Huang LF and Lin CY: Azoxystrobin
induces apoptosis of human esophageal squamous cell carcinoma
KYSE-150 cells through triggering of the mitochondrial pathway.
Front Pharmacol. 8:2772017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wu J, Cai Y, Li M, Zhang Y, Li H and Tan
Z: Oxymatrine promotes S-Phase arrest and inhibits cell
proliferation of human breast cancer cells in vitro through
Mitochondria-mediated apoptosis. Biol Pharm Bull. 40:1232–1239.
2017. View Article : Google Scholar : PubMed/NCBI
|