1
|
Deafness and hearing loss fact sheet No.
300. WHO. http://www.who.int/mediacentre/factsheets/fs300/en/2015.
|
2
|
Li L, Lu JGM, Liu Y and Xiao YL: Common
deafness genes detection and hot mutation spots analysis in
patients with congenital non-syndromic hearing loss. Chinese
Journal of otology. 10:246–251. 2012.
|
3
|
Jiang L, Ling Y, Cai G and Wang R:
Research on the clinical application of DNA microarray on deafness
gene mutations. J Mol Diag Ther. 3:170–172. 2011.
|
4
|
Smith RJ: Clinical application of genetic
testing for deafness. Am J Med Genet A. 130A:1–12. 2004. View Article : Google Scholar
|
5
|
Petersen MB and Willems PJ: Non-syndromic,
autosomal-recessive deafness. Clin Genet. 69:371–392. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen PH and Yang T: Whole exome sequencing
helps diagnose Muckle-Wells syndrome in a Chinese family with
autosomal dominant hearing loss. J Shanghai Jiao Tong Univ (Med
Sci). 36:1135–1139. 2016.
|
7
|
Li S, Peng Q, Liao S, Li W, Ma Q and Lu X:
A reverse dot blot assay for the screening of twenty mutations in
four genes associated with NSHL in a Chinese population. PLoS One.
12:e01771962017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shearer AE, DeLuca AP, Hildebrand MS,
Taylor KR, Gurrola J II, Scherer S, Scheetz TE and Smith RJ:
Comprehensive genetic testing for hereditary hearing loss using
massively parallel sequencing. Proc Natl Acad Sci USA. 107:pp.
21104–21109. 2010; View Article : Google Scholar : PubMed/NCBI
|
9
|
Choi M, Scholl UI, Ji W, Liu T, Tikhonova
IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, et al:
Genetic diagnosis by whole exome capture and massively parallel DNA
sequencing. Proc Natl Acad Sci USA. 106:pp. 19096–19101. 2009;
View Article : Google Scholar : PubMed/NCBI
|
10
|
Bae SH, Baek JI, Lee JD, Song MH, Kwon TJ,
Oh SK, Jeong JY, Choi JY, Lee KY and Kim UK: Genetic analysis of
auditory neuropathy spectrum disorder in the Korean population.
Gene. 522:65–69. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
TruSight One Sequencing Panel Series
Reference Guide. https://support.microsoft.com/en-us/help/17621/internet-explorer-downloadsAugust.
2017
|
12
|
Chun S and Fay JC: Identification of
deleterious mutations within three human genomes. Genome Res.
19:1553–1561. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang K, Li M and Hakonarson H: ANNOVAR:
Functional annotation of genetic variants from high-throughput
sequencing data. Nucleic Acids Res. 38:e1642010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang SZ, Dai P, Liu X, Kang D, Zhang X,
Yang W, Zhou C, Yang S and Yuan H: Genetic and phenotypic
heterogeneity in Chinese patients with Waardenburg syndrome type
II. PLoS One. 8:e771492013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hertwig P: Neue mutationen und
Kopplungsgruppen bei der Hausmaus. Z Induct
Abstammungs-Vererbungsl. 80:220–246. 1942.
|
16
|
Hemesath TJ, Steingrímsson E, McGill G,
Hansen MJ, Vaught J, Hodgkinson CA, Amheiter H, Copeland NG,
Jenkins NA and Fishe DE: Microphthalmia, a critical factor in
melanocyte development, defines a discrete transcription factor
family. Genes Dev. 8:2770–2780. 1994. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tassabehji M, Newton VE and Read AP:
Waardenburg syndrome type 2 caused by mutations in the human
microphthalmia (MITF) gene. Nat Genet. 8:251–255. 1994. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hershey CL and Fisher DE: Genomic analysis
of the Microphthalmia locus and identification of the MITF-J/Mitf-J
isoform. Gene. 347:73–82. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Steingrímsson E, Moore KJ, Lamoreux ML,
Ferré-D'Amaré AR, Burley SK, Zimring DC, Skow LC, Hodgkinson CA,
Arnheiter H, Copeland NG, et al: Molecular basis of mouse
microphthalmia (mi) mutations helps explain their developmental and
phenotypic consequences. Nat Genet. 8:256–263. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Steingrímsson E, Copeland NG and Jenkins
NA: Melanocytes and the microphthalmia transcription factor
network. Annu Rev Genet. 38:365–411. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kawakami A and Fisher DE: The master role
of microphthalmia-associated transcription factor in melanocyte and
melanoma biology. Lab Invest. 97:649–656. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen L, Guo W, Ren L, Yang M, Zhao Y, Guo
Z, Yi H, Li M, Hu Y, Long X, et al: A de novo silencer causes
elimination of MITF-M expression and profound hearing loss in pigs.
BMC Biol. 14:522016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu CC, Lee YC, Chen PJ and Hsu CJ:
Predominance of genetic diagnosis and imaging results as predictors
in determining the speech perception performance outcome after
cochlear implantation in children. Arch Pediatr Adolesc Med.
162:269–276. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sinnathuray AR, Toner JG, Clarke-Lyttle J,
Geddis A, Patterson CC and Hughes AE: Connexin 26 (GJB2)
gene-related deafness and speech intelligibility after cochlear
implantation. Otol Neurotol. 25:935–942. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen W, Yi H, Zhang L, Ji F, Yuan S, Zhang
Y, Ren L, Li J, Chen L, Guo W and Yang S: Establishing the standard
method of cochlear implant in Rongchang pig. Acta Otolaryngol.
137:503–510. 2017. View Article : Google Scholar : PubMed/NCBI
|