1
|
Taichman RS and Hauschka PV: Effects of
interleukin-1 beta and tumor necrosis factor-alpha on osteoblastic
expression of osteocalcin and mineralized extracellular matrix
in vitro. Inflammation. 16:587–601. 1992. View Article : Google Scholar : PubMed/NCBI
|
2
|
Papapoulos S, Roux C, Bone HG, Dakin P,
Czerwiński E, Frey D, Kendler D, Lewiecki EM, Malouf J, Mellström
D, et al: FRI0289 denosumab treatment in postmenopausal women with
osteoporosis for up to 9 years: Results through year 6 of the
freedom extension. Ann Rheum Dis. 74:529–530. 2015. View Article : Google Scholar
|
3
|
Yang N, Wang G, Hu C, Shi Y, Liao L, Shi
S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor α
suppresses the mesenchymal stem cell osteogenesis promoter miR-21
in estrogen deficiency-induced osteoporosis. J Bone Miner Res.
28:559–573. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jochems C, Islander U, Erlandsson M,
Verdrengh M, Ohlsson C and Carlsten H: Osteoporosis in experimental
postmenopausal polyarthritis: The relative contributions of
estrogen deficiency and inflammation. Arthritis Res Ther.
7:R837–R843. 2005. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Muruganandan S and Sinal CJ: The impact of
bone marrow adipocytes on osteoblast and osteoclast
differentiation. IUBMB Life. Mar 17–2014.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
6
|
Cheon YH, Kim JY, Baek JM, Ahn SJ, Jun HY,
Erkhembaatar M, Kim MS, Lee MS and Oh J: WHI-131 promotes
osteoblast differentiation and prevents osteoclast formation and
resorption in mice. J Bone Miner Res. 31:403–415. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sánchez-Rodríguez MA, Ruiz-Ramos M,
Correa-Muñoz E and Mendoza-Núñez VM: Oxidative stress as a risk
factor for osteoporosis in elderly Mexicans as characterized by
antioxidant enzymes. BMC Musculoskelet Disord. 8:1242007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Manolagas SC: From estrogen-centric to
aging and oxidative stress: A revised perspective of the
pathogenesis of osteoporosis. Endocr Rev. 31:266–300. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Fubini B and Hubbard A: Reactive oxygen
species (ROS) and reactive nitrogen species (RNS) generation by
silica in inflammation and fibrosis. Free Radical Biol Med.
34:1507–1516. 2003. View Article : Google Scholar
|
10
|
Mossman BT: Introduction to serial reviews
on the role of reactive oxygen and nitrogen species (ROS/RNS) in
lung injury and diseases. Free Radical Biol Med. 34:1115–1116.
2003. View Article : Google Scholar
|
11
|
Singha UK, Jiang Y, Yu S, Luo M, Lu Y,
Zhang J and Xiao G: Rapamycin inhibits osteoblast proliferation and
differentiation in MC3T3-E1 cells and primary mouse bone marrow
stromal cells. J Cell Biochem. 103:434–446. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Byun CH, Koh JM, Kim DK, Park SI, Lee KU
and Kim GS: Alpha-lipoic acid inhibits TNF-alpha-induced apoptosis
in human bone marrow stromal cells. J Bone Miner Res. 20:1125–1135.
2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Halleen JM, Räisänen S, Salo JJ, Reddy SV,
Roodman GD, Hentunen TA, Lehenkari PP, Kaija H, Vihko P and
Väänänen HK: Intracellular fragmentation of bone resorption
products by reactive oxygen species generated by osteoclastic
tartrate-resistant acid phosphates. J Biol Chem. 274:22907–22910.
1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee SH, Kim JK and Jang HD: Genistein
inhibits osteoclastic differentiation of RAW 264.7 cells via
regulation of ROS production and scavenging. Int J Mol Sci.
15:10605–10621. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Uchiyama Y, Higuchi Y, Takeda S, Masaki T,
Shira-Ishi A, Sato K, Kubodera N, Ikeda K and Ogata E: ED-71, a
vitamin D analog, is a more potent inhibitor of bone resorption
than alfacalcidol in an estrogen-deficient rat model of
osteoporosis. Bone. 30:582–588. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wronski TJ, Ratkus AM, Thomsen JS, Vulcan
Q and Mosekilde L: Sequential treatment with basic fibroblast
growth factor and parathyroid hormone restores lost cancellous bone
mass and strength in the proximal tibia of aged ovariectomized
rats. J Bone Miner Res. 16:1399–1407. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
De França NA, Camargo MB, Lazaretti-Castro
M and Martini LA: Antioxidant intake and bone status in a
cross-sectional study of Brazilian women with osteoporosis. Nutr
Health. 22:133–142. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim MB, Song Y and Hwang JK: Kirenol
stimulates osteoblast differentiation through activation of the BMP
and Wnt/β-catenin signaling pathways in MC3T3-E1 cells.
Fitoterapia. 98:59–65. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fujita KI and Janz S: Attenuation of WNT
signaling by DKK-1 and −2 regulates BMP2-induced osteoblast
differentiation and expression of OPG, RANKL and M-CSF. Mol Cancer.
6:712007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yen K, Narasimhan SD and Tissenbaum HA:
DAF-16/Forkhead box O transcription factor: Many paths to a single
Fork(head) in the road. Antioxid Redox Sign. 14:623–634. 2011.
View Article : Google Scholar
|
21
|
Ouyang W, Beckett O, Flavell RA and Li MO:
An essential role of the forkhead-box transcription factor foxo1 in
control of T cell homeostasis and tolerance. Immunity. 30:358–371.
2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rached MT, Kode A, Xu L, Yoshikawa Y, Paik
JH, Depinho RA and Kousteni S: FoxO1 is a positive regulator of
bone formation by favoring protein synthesis and resistance to
oxidative stress in osteoblasts. Cell Metab. 11:147–160. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Paik JH, Kollipara R, Chu G, Ji H, Xiao Y,
Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, et al: FoxOs are
lineage-restricted redundant tumor suppressors and regulate
endothelial cell homeostasis. Cell. 128:309–323. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Borra MT, O'Neill FJ, Jackson MD, Marshall
B, Verdin E, Foltz KR and Denu JM: Conserved enzymatic production
and biological effect of O-acetyl-ADP-ribose by silent information
regulator 2-like NAD+-dependent deacetylases. J Biol Chem.
277:12632–12641. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wojcik M, Mac-Marcjanek K and Wozniak LA:
Physiological and pathophysiological functions of SIRT1. Mini-Rev
Med Chem. 9:386–394. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bai L, Pang WJ, Yang YJ and Yang GS:
Modulation of Sirt1 by resveratrol and nicotinamide alters
proliferation and differentiation of pig preadipocytes. Mol Cell
Biochem. 307:129–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mader I, Wabitsch M, Debatin KM,
Fischer-Posovszky P and Fulda S: Identification of a novel
proapoptotic function of resveratrol in fat cells:
SIRT1-independent sensitization to TRAIL-induced apoptosis. FASEB
J. 24:1997–2009. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shakibaei M, Shayan P, Busch F, Aldinger
C, Buhrmann C, Lueders C and Mobasheri A: Resveratrol mediated
modulation of Sirt-1/Runx2 promotes osteogenic differentiation of
mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS
One. 7:e357122012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hallows WC, Albaugh BC and Denu JM: Where
in the cell is SIRT3? Functional localization of an NAD+-dependent
protein deacetylase. BIOCHEM J. 411:e11–e13. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao Y, Feng G, Wang Y, Yue Y and Zhao W:
Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs:
Implications for TAA pathogenesis. Int J Clin Exp Pathol.
7:7643–7652. 2014.PubMed/NCBI
|
31
|
Park WH: The effect of MAPK inhibitors and
ROS modulators on cell growth and death of
H2O2-treated HeLa cells. Mol Med Rep. 8:557–564.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Suzin J, Szubert M and Kowalczyk-Amico K:
Osteoporosis - A frequent problem of postmenopausal woman.
Menopausal Review. 6:320–323. 2009.
|
33
|
Kitamura YI, Kitamura T, Kruse JP, Raum
JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic
beta cell failure through NeuroD and MafA induction. Cell Metab.
2:153–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang Y, Hou H, Haller EM, Nicosia SV and
Bai W: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated
deacetylation. EMBO J. 24:1021–1032. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chae HD and Broxmeyer HE: SIRT1 deficiency
downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen
species-induced apoptosis in mouse embryonic stem cells. Stem Cells
Dev. 20:1277–1285. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang C, Feng Y, Qu S, Wei X, Zhu H, Luo
Q, Liu M, Chen G and Xiao X: Resveratrol attenuates
doxorubicin-induced cardiomyocyte apoptosis in mice through
SIRT1-mediated deacetylation of p53. Cardiovasc Res. 90:538–545.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Alcendor RR, Gao S, Zhai P, Zablocki D,
Holle E, Yu X, Tian B, Wagner T, Vatner SF and Sadoshima J: Sirt1
regulates aging and resistance to oxidative stress in the heart.
Circ Res. 100:1512–1521. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Calvanese V and Fraga MF: SirT1 brings
stemness closer to cancer and aging. Aging (Albany NY). 3:162–167.
2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Firestein R, Blander G, Michan S,
Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S,
de Cabo R, Fuchs C, et al: The SIRT1 deacetylase suppresses
intestinal tumorigenesis and colon cancer growth. PLoS One.
3:e20202008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Simic P, Zainabadi K, Bell E, Sykes DB,
Saez B, Lotinun S, Baron R, Scadden D, Schipani E and Guarente L:
SIRT1 regulates differentiation of mesenchymal stem cells by
deacetylating β-catenin. EMBO Mol Med. 5:430–440. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ikarashi N, Tajima M, Suzuki K, Toda T,
Ito K, Ochiai W and Sugiyama K: Inhibition of preadipocyte
differentiation and lipid accumulation by Orengedokuto treatment of
3T3-L1 cultures. Phytother Res. 26:91–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Viccica G, Francucci CM and Marcocci C:
The role of PPARγ for the osteoblastic differentiation. J
Endocrinol Invest. 33 7 Suppl:S9–S12. 2010.
|
43
|
Xiao G, Jiang D, Ge C, Zhao Z, Lai Y,
Boules H, Phimphilai M, Yang X, Karsenty G and Franceschi RT:
Cooperative interactions between activating transcription factor 4
and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene
expression. J Biol Chem. 280:30689–30696. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Picard F, Kurtev M, Chung N, Topark-Ngarm
A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW and
Guarente L: Sirt1 promotes fat mobilization in white adipocytes by
repressing PPAR-gamma. Nature. 429:771–776. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Patra S, Mascarenhas R, Maliyakkal N and
Aranjani JM: Protocatechualdehyde induces apoptosis in human
non-small-cell lung cancer cells by up regulation of growth arrest
and DNA damage-inducible (GADD) genes. Mol Biol. 2:1132013.
View Article : Google Scholar
|
46
|
Hassumani DO: Expression of growth arrest
and DNA damage protein 45-alpha (gadd45-alpha) and the
CCAAT/enhancer binding protein-delta (C/EBP-delta) in fishes
exposed to heat and hypoxia. Thesis, Portland State University.
Dissertations and Theses. paper 943. 2013.
|
47
|
Senft D, Weber A, Saathoff F, Berking C,
Heppt MV, Kammerbauer C, Rothenfusser S, Kellner S, Kurgyis Z,
Besch R and Häcker G: In non-transformed cells Bak activates upon
loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of
active BH3-only proteins. Cell Death Dis. 6:e19962015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang L, Fang Y, Xu XF and Jin DY:
Moscatilin induces apoptosis of pancreatic cancer cells via
reactive oxygen species and the JNK/SAPK pathway. Mol Med Rep.
15:1195–1203. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Marani M, Tenev T, Hancock D, Downward J
and Lemoine NR: Identification of novel isoforms of the BH3 domain
protein bim which directly activate bax to trigger apoptosis. Mol
Cell Biol. 22:3577–3589. 2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Al-Mubarak B, Soriano FX and Hardingham
GE: Synaptic NMDAR activity suppresses FOXO1 expression via a
cis-acting FOXO binding site: FOXO1 is a FOXO target gene. Channels
(Austin). 3:233–238. 2009. View Article : Google Scholar : PubMed/NCBI
|