1
|
Quigley HA and Broman AT: The number of
people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol.
90:262–267. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sommer A, Tielsch JM, Katz J, Quigley HA,
Gottsch JD, Javitt J and Singh K: Relationship between intraocular
pressure and primary open angle glaucoma among white and black
Americans. The Baltimore Eye Survey. Arch Ophthalmol.
109:1090–1095. 1991. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yamazaki M, Omodaka K, Takahashi H and
Nakazawa T: Estimated retinal ganglion cell counts for assessing a
wide range of glaucoma stages, from preperimetric to advanced. Clin
Exp Ophthalmol. 45:310–313. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hirooka K, Izumibata S, Ukegawa K, Nitta E
and Tsujikawa A: Estimating the rate of retinal ganglion cell loss
to detect glaucoma progression: An observational cohort study.
Medicine (Baltimore). 95:e42092016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Salehi H, Amirpour N, Razavi S, Esfandiari
E and Zavar R: Overview of retinal differentiation potential of
mesenchymal stem cells: A promising approach for retinal cell
therapy. Ann Anat. 210:52–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jagatha B, Divya MS, Sanalkumar R,
Indulekha CL, Vidyanand S, Divya TS, Das AV and James J: In vitro
differentiation of retinal ganglion-like cells from embryonic stem
cell derived neural progenitors. Biochem Biophys Res Commun.
380:230–235. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang C, Zhang J, Ao M, Li Y, Zhang C, Xu
Y, Li X and Wang W: Combination of retinal pigment epithelium
cell-conditioned medium and photoreceptor outer segments stimulate
mesenchymal stem cell differentiation toward a functional retinal
pigment epithelium cell phenotype. J Cell Biochem. 113:590–598.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qiu G, Seiler MJ, Thomas BB, Wu K,
Radosevich M and Sadda SR: Revisiting nestin expression in retinal
progenitor cells in vitro and after transplantation in vivo. Exp
Eye Res. 84:1047–1059. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Davis LK, Meyer KJ, Rudd DS, Librant AL,
Epping EA, Sheffield VC and Wassink TH: Pax6 3′ deletion results in
aniridia, autism and mental retardation. Hum Genet. 123:371–378.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Suzuki N, Shimizu J, Takai K, Arimitsu N,
Ueda Y, Takada E, Hirotsu C, Suzuki T, Fujiwara N and Tadokoro M:
Establishment of retinal progenitor cell clones by transfection
with Pax6 gene of mouse induced pluripotent stem (iPS) cells.
Neurosci Lett. 509:116–120. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang W, Fileta J, Guo Y and Grosskreutz
CL: Downregulation of Thy1 in retinal ganglion cells in
experimental glaucoma. Curr Eye Res. 31:265–271. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jain V, Ravindran E and Dhingra NK:
Differential expression of Brn3 transcription factors in
intrinsically photosensitive retinal ganglion cells in mouse. J
Comp Neurol. 520:742–755. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Vecino E: Animal models in the study of
the glaucoma: Past, present and future. Arch Soc Esp Oftalmol.
83:517–519. 2008.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
15
|
Rasmussen CA and Kaufman PL: Primate
glaucoma models. J Glaucoma. 14:311–314. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Brooks DE: Glaucoma in the dog and cat.
Vet Clin North Am Small Anim Pract. 20:775–797. 1990. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ruiz-Ederra J, García M, Hernández M,
Urcola H, Hernández-Barbáchano E, Araiz J and Vecino E: The pig eye
as a novel model of glaucoma. Exp Eye Res. 81:561–569. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Pang IH and Clark AF: Rodent models for
glaucoma retinopathy and optic neuropathy. J Glaucoma. 16:483–505.
2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wax MB, Tezel G, Kobayashi S and Hernandez
MR: Responses of different cell lines from ocular tissues to
elevated hydrostatic pressure. Br J Ophthalmol. 84:423–428. 2000.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ishikawa M, Yoshitomi T, Zorumski CF and
Izumi Y: Effects of acutely elevated hydrostatic pressure in a rat
ex vivo retinal preparation. Invest Ophthalmol Vis Sci.
51:6414–6423. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Harada T, Harada C, Nakamura K, Quah HM,
Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A and
Tanaka K: The potential role of glutamate transporters in the
pathogenesis of normal tension glaucoma. J Clin Invest.
117:1763–1770. 2007. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Chen J, Miao Y, Wang XH and Wang Z:
Elevation of p-NR2A(S1232) by Cdk5/p35 contributes to retinal
ganglion cell apoptosis in a rat experimental glaucoma model.
Neurobiol Dis. 43:455–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xue B, Xie Y, Xue Y, Hu N, Zhang G, Guan H
and Ji M: Involvement of P2X7 receptors in retinal ganglion cell
apoptosis induced by activated Müller cells. Exp Eye Res.
153:42–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang QL, Wang W, Li J, Tian SY and Zhang
TZ: Decreased miR-187 induces retinal ganglion cell apoptosis
through upregulating SMAD7 in glaucoma. Biomed Pharmacother.
75:19–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu X, Yang X, Zhu R, Dai M, Zhu M, Shen
Y, Fang H, Sang A and Chen H: Involvement of Fra-1 in retinal
ganglion cell apoptosis in rat light-induced retina damage model.
Cell Mol Neurobiol. 37:83–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yan P, Tang S, Zhang H, Guo Y, Zeng Z and
Wen Q: Palmitic acid triggers cell apoptosis in RGC-5 retinal
ganglion cells through the Akt/FoxO1 signaling pathway. Metab Brain
Dis. 32:453–460. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang Z, Hu F, Liu Y, Ma B, Chen X, Zhu K,
Shi Y, Wei T, Xing Y, Gao Y, et al: Activation of type 5
metabotropic glutamate receptor promotes the proliferation of rat
retinal progenitor cell via activation of the PI-3-K and MAPK
signaling pathways. Neuroscience. 322:138–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wong L, Power N, Miles A and Tropepe V:
Mutual antagonism of the paired-type homeobox genes, vsx2 and
dmbx1, regulates retinal progenitor cell cycle exit upstream of
ccnd1 expression. Dev Biol. 402:216–228. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shechter R, Ronen A, Rolls A, London A,
Bakalash S, Young MJ and Schwartz M: Toll-like receptor 4 restricts
retinal progenitor cell proliferation. J Cell Biol. 183:393–400.
2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Terada K and Furukawa T: Sumoylation
controls retinal progenitor proliferation by repressing cell cycle
exit in Xenopus laevis. Dev Biol. 347:180–194. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Das I, Sparrow JR, Lin MI, Shih E, Mikawa
T and Hempstead BL: Trk C signaling is required for retinal
progenitor cell proliferation. J Neurosci. 20:2887–2895. 2000.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim JY, Park R, Lee JH, Shin J, Nickas J,
Kim S and Cho SH: Yap is essential for retinal progenitor cell
cycle progression and RPE cell fate acquisition in the developing
mouse eye. Dev Biol. 419:336–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chaney SY, Mukherjee S, Giddabasappa A,
Rueda EM, Hamilton WR, Johnson JE Jr and Fox DA: Increased
proliferation of late-born retinal progenitor cells by gestational
lead exposure delays rod and bipolar cell differentiation. Mol Vis.
22:1468–1489. 2016.PubMed/NCBI
|
34
|
Bertacchi M, Lupo G, Pandolfini L,
Casarosa S, D'Onofrio M, Pedersen RA, Harris WA and Cremisi F:
Activin/nodal signaling supports retinal progenitor specification
in a narrow time window during pluripotent stem cell neuralization.
Stem Cell Reports. 5:532–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Asaoka Y, Hata S, Namae M, Furutani-Seiki
M and Nishina H: The Hippo pathway controls a switch between
retinal progenitor cell proliferation and photoreceptor cell
differentiation in zebrafish. PLoS One. 9:e973652014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hashimoto T, Zhang XM, Chen BY and Yang
XJ: VEGF activates divergent intracellular signaling components to
regulate retinal progenitor cell proliferation and neuronal
differentiation. Development. 133:2201–2210. 2006. View Article : Google Scholar : PubMed/NCBI
|