1
|
Barnes PJ: Senescence in COPD and its
comorbidities. Annu Rev Physiol. 79:517–539. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chun P: Role of sirtuins in chronic
obstructive pulmonary disease. Arch Pharm Res. 38:1–10. 2015.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Burney P, Kato B, Janson C, Mannino D,
Studnicka M, Tan W, Bateman E, Koçabas A, Vollmer WM, Gislason T,
et al: Chronic obstructive pulmonary disease mortality and
prevalence: The associations with smoking and poverty: A BOLD
analysis-authors' reply. Thorax. 69:869–870. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Petrusca DN, Van Demark M, Gu Y, Justice
MJ, Rogozea A, Hubbard WC and Petrache I: Smoking exposure induces
human lung endothelial cell adaptation to apoptotic stress. Am J
Respir Cell Mol Biol. 50:513–325. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sun J, Bao J, Shi Y, Zhang B, Yuan L, Li
J, Zhang L, Sun M, Zhang L and Sun W: Effect of simvastatin on MMPs
and TIMPs in cigarette smoke-induced rat COPD model. Int J Chron
Obstruct Pulmon Dis. 12:717–724. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zou Y, Chen X, Liu J, Zhou DB, Kuang X,
Xiao J, Yu Q, Lu X, Li W, Xie B and Chen Q: Serum IL-1β and IL-17
levels in patients with COPD: Associations with clinical
parameters. Int J Chron Obstruct Pulmon Dis. 12:1247–1254. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Gea J, Pascual S, Casadevall C,
Orozco-Levi M and Barreiro E: Muscle dysfunction in chronic
obstructive pulmonary disease: Update on causes and biological
findings. J Thorac Dis. 7:E418–E438. 2015.PubMed/NCBI
|
8
|
Kawayama T, Kinoshita T, Matsunaga K,
Kobayashi A, Hayamizu T, Johnson M and Hoshino T: Responsiveness of
blood and sputum inflammatory cells in Japanese COPD patients,
non-COPD smoking controls, and non-COPD nonsmoking controls. Int J
Chron Obstruct Pulmon Dis. 11:295–303. 2016.PubMed/NCBI
|
9
|
Ryter SW, Lam HC, Chen ZH and Choi AM:
Deadly triplex: Smoke, autophagy and apoptosis. Autophagy.
7:436–437. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ryter SW, Lee SJ and Choi AM: Autophagy in
cigarette smoke-induced chronic obstructive pulmonary disease.
Expert Rev Respir Med. 4:573–584. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ryter SW, Chen ZH, Kim HP and Choi AM:
Autophagy in chronic obstructive pulmonary disease: Homeostatic or
pathogenic mechanism. Autophagy. 5:235–237. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Y, Yu G, Yuan S, Tan C, Lian P, Fu L,
Hou Q, Xu B and Wang H: Cigarette smoke-induced pulmonary
inflammation and autophagy are attenuated in Ephx2-deficient mice.
Inflammation. 40:497–510. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li Y, Yu G, Yuan S, Tan C, Xie J, Ding Y,
Lian P, Fu L, Hou Q, Xu B and Wang H: 14,15-Epoxyeicosatrienoic
acid suppresses cigarette smoke condensate-induced inflammation in
lung epithelial cells by inhibiting autophagy. Am J Physiol Lung
Cell Mol Physiol. 311:L970–L980. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pei J, Deng J, Ye Z, Wang J, Gou H, Liu W,
Zhao M, Liao M, Yi L and Chen J: Absence of autophagy promotes
apoptosis by modulating the ROS-dependent RLR signaling pathway in
classical swine fever virus-infected cells. Autophagy.
12:1738–1758. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen Y, Azad MB and Gibson SB: Methods for
detecting autophagy and determining autophagy-induced cell death.
Can J Physiol Pharmacol. 88:285–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vestbo J, Hurd SS, Agustí AG, Jones PW,
Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ,
Nishimura M, et al: Global strategy for the diagnosis, management,
and prevention of chronic obstructive pulmonary disease: GOLD
executive summary. Am J Respir Crit Care Med. 187:347–365. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Furlong HC, Stämpfli MR, Gannon AM and
Foster WG: Cigarette smoke exposure triggers the autophagic cascade
via activation of the AMPK pathway in mice. Biol Reprod. 93:932015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gannon AM, Stämpfli MR and Foster WG:
Cigarette smoke exposure elicits increased autophagy and
dysregulation of mitochondrial dynamics in murine granulosa cells.
Biol Reprod. 88:632013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen ZH, Wu YF, Wang PL, Wu YP, Li ZY,
Zhao Y, Zhou JS, Zhu C, Cao C, Mao YY, et al: Autophagy is
essential for ultrafine particle-induced inflammation and mucus
hyperproduction in airway epithelium. Autophagy. 12:297–311. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou JS, Zhao Y, Zhou HB, Wang Y, Wu YF,
Li ZY, Xuan NX, Zhang C, Hua W, Ying SM, et al: Autophagy plays an
essential role in cigarette smoke-induced expression of MUC5AC in
airway epithelium. Am J Physiol Lung Cell Mol Physiol.
310:L1042–L1052. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hussain SN and Sandri M: Role of autophagy
in COPD skeletal muscle dysfunction. J Appl Physiol (1985).
114:1273–1281. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Plant PJ, Brooks D, Faughnan M, Bayley T,
Bain J, Singer L, Correa J, Pearce D, Binnie M and Batt J: Cellular
markers of muscle atrophy in chronic obstructive pulmonary disease.
Am J Respir Cell Mol Biol. 42:461–471. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bodas M and Vij N: Augmenting autophagy
for prognosis based intervention of COPD-pathophysiology. Respir
Res. 18:832017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Singh K, Matsuyama S, Drazba JA and
Almasan A: Autophagy-dependent senescence in response to DNA damage
and chronic apoptotic stress. Autophagy. 8:236–251. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bodas M, Patel N, Silverberg D, Walworth K
and Vij N: Master autophagy regulator transcription factor EB
regulates cigarette smoke-induced autophagy impairment and chronic
obstructive pulmonary disease-emphysema pathogenesis. Antioxid
Redox Signal. 27:150–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee
SJ, Ifedigbo E, Parameswaran H, Ryter SW and Choi AM: Autophagy
protein microtubule-associated protein 1 light chain-3B (LC3B)
activates extrinsic apoptosis during cigarette smoke-induced
emphysema. Proc Natl Acad Sci USA. 107:18880–18885. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Tsukahara T, Matsuda Y, Usui Y and Haniu
H: Highly purified, multi-wall carbon nanotubes induce light-chain
3B expression in human lung cells. Biochem Biophys Res Commun.
440:348–353. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Aparicio IM, Espino J, Bejarano I,
Gallardo-Soler A, Campo ML, Salido GM, Pariente JA, Peña FJ and
Tapia JA: Autophagy-related proteins are functionally active in
human spermatozoa and may be involved in the regulation of cell
survival and motility. Sci Rep. 6:336472016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang Y, Zhu WG and Zhao Y: Autophagy
substrate SQSTM1/p62 regulates chromatin ubiquitination during the
DNA damage response. Autophagy. 13:212–213. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bitto A, Lerner CA, Nacarelli T, Crowe E,
Torres C and Sell C: P62/SQSTM1 at the interface of aging,
autophagy, and disease. Age (Dordr). 36:96262014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Taniguchi K, Yamachika S, He F and Karin
M: p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative
stress but promotes liver cancer. FEBS Lett. 590:2375–2397. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Schläfli AM, Adams O, Galván JA, Gugger M,
Savic S, Bubendorf L, Schmid RA, Becker KF, Tschan MP, Langer R and
Berezowska S: Prognostic value of the autophagy markers LC3 and
p62/SQSTM1 in early-stage non-small cell lung cancer. Oncotarget.
7:39544–39555. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hewitt G, Carroll B, Sarallah R,
Correia-Melo C, Ogrodnik M, Nelson G, Otten EG, Manni D, Antrobus
R, Morgan BA, et al: SQSTM1/p62 mediates crosstalk between
autophagy and the UPS in DNA repair. Autophagy. 12:1917–1930. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Kuhn C III, Homer RJ, Zhu Z, Ward N,
Flavell RA, Geba GP and Elias JA: Airway hyperresponsiveness and
airway obstruction in transgenic mice. Morphologic correlates in
mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J
Respir Cell Mol Biol. 22:289–295. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bhowmik A, Seemungal TA, Sapsford RJ and
Wedzicha JA: Relation of sputum inflammatory markers to symptoms
and lung function changes in COPD exacerbations. Thorax.
55:114–120. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ryter SW, Koo JK and Choi AM: Molecular
regulation of autophagy and its implications for metabolic
diseases. Curr Opin Clin Nutr Metab Care. 17:329–337. 2014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Feizi N, Mehrbod P, Romani B, Soleimanjahi
H, Bamdad T, Feizi A, Jazaeri EO, Targhi HS, Saleh M, Jamali A, et
al: Autophagy induction regulates influenza virus replication in a
time-dependent manner. J Med Microbiol. 66:536–541. 2017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ma Y, Galluzzi L, Zitvogel L and Kroemer
G: Autophagy and cellular immune responses. Immunity. 39:211–227.
2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhong Z, Sanchez-Lopez E and Karin M:
Autophagy, NLRP3 inflammasome and auto-inflammatory/immune
diseases. Clin Exp Rheumatol. 34 4 Suppl 98:S12–S16. 2016.
|
40
|
Vij N, Chandramani-Shivalingappa P, Van
Westphal C, Hole R and Bodas M: Cigarette smoke induced
autophagy-impairment accelerates lung aging, COPD-emphysema
exacerbations and pathogenesis. Am J Physiol Cell Physiol.
314:C73–C87. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li D, Hu J, Wang T, Zhang X, Liu L, Wang
H, Wu Y, Xu D and Wen F: Silymarin attenuates cigarette smoke
extract-induced inflammation via simultaneous inhibition of
autophagy and ERK/p38 MAPK pathway in human bronchial epithelial
cells. Sci Rep. 6:377512016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Polosukhin VV, Lawson WE, Milstone AP,
Egunova SM, Kulipanov AG, Tchuvakin SG, Massion PP and Blackwell
TS: Association of progressive structural changes in the bronchial
epithelium with subepithelial fibrous remodeling: A potential role
for hypoxia. Virchows Arch. 451:793–803. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Baek KJ, Cho JY, Rosenthal P, Alexander
LE, Nizet V and Broide DH: Hypoxia potentiates allergen induction
of HIF-1α, chemokines, airway inflammation, TGF-β1, and airway
remodeling in a mouse model. Clin Immunol. 147:27–37. 2013.
View Article : Google Scholar : PubMed/NCBI
|