1
|
Carvalho E, Verma P, Hourigan K and
Banerjee R: Myocardial infarction: Stem cell transplantation for
cardiac regeneration. Regen Med. 10:1025–1043. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cho GS, Fernandez L and Kwon C:
Regenerative medicine for the heart: Perspectives on stem-cell
therapy. Antioxid Redox Signal. 21:2018–2031. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mozaffarian D, Benjamin EJ, Go AS, Arnett
DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ,
Howard VJ, et al: Heart disease and stroke statistics-2015 update:
A report from the American Heart Association. Circulation.
131:e29–e322. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Poglajen G and Vrtovec B: Stem cell
therapy for chronic heart failure. Curr Opin Cardiol. 30:301–310.
2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oliveira MS, Saldanha-Araujo F, Goes AM,
Costa FF and de Carvalho JL: Stem cells in cardiovascular diseases:
Turning bad days into good ones. Drug Discov Today. 22:1730–1739.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wegener M, Bader A and Giri S: How to mend
a broken heart: Adult and induced pluripotent stem cell therapy for
heart repair and regeneration. Drug Discov Today. 20:667–685. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Carvalho PH, Daibert AP, Monteiro BS,
Okano BS, Carvalho JL, Cunha DN, Favarato LS, Pereira VG, Augusto
LE and Del Carlo RJ: Differentiation of adipose tissue-derived
mesenchymal stem cells into cardiomyocytes. Arq Bras Cardiol.
100:82–89. 2013.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI
|
8
|
Wen Z, Zheng S, Zhou C, Yuan W, Wang J and
Wang T: Bone marrow mesenchymal stem cells for post-myocardial
infarction cardiac repair: microRNAs as novel regulators. J Cell
Mol Med. 16:657–671. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Halleux C, Sottile V, Gasser JA and Seuwen
K: Multi-lineage potential of human mesenchymal stem cells
following clonal expansion. J Musculoskelet Neuronal Interact.
2:71–76. 2001.PubMed/NCBI
|
10
|
Li J, Zhu K, Wang Y, Zheng J, Guo C, Lai H
and Wang C: Combination of IGF-1 gene manipulation and 5-AZA
treatment promotes differentiation of mesenchymal stem cells into
cardiomyocyte-like cells. Mol Med Rep. 11:815–820. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang T, Xu Z, Jiang W and Ma A:
Cell-to-cell contact induces mesenchymal stem cell to differentiate
into cardiomyocyte and smooth muscle cell. Int J Cardiol.
109:74–81. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Arminán A, Gandía C, Bartual M,
García-Verdugo JM, Lledó E, Mirabet V, Llop M, Barea J, Montero JA
and Sepúlveda P: Cardiac differentiation is driven by NKX2.5 and
GATA4 nuclear translocation in tissue-specific mesenchymal stem
cells. Stem Cells Dev. 18:907–918. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shen X, Pan B, Zhou H, Liu L, Lv T, Zhu J,
Huang X and Tian J: Differentiation of mesenchymal stem cells into
cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway.
J Biomed Sci. 24:292017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rosca AM and Burlacu A: Effect of
5-azacytidine: Evidence for alteration of the multipotent ability
of mesenchymal stem cells. Stem Cells Dev. 20:1213–1221. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Krek A, Grün D, Poy MN, Wolf R, Rosenberg
L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M
and Rajewsky N: Combinatorial microRNA target predictions. Nat
Genet. 37:495–500. 2005. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Hofsteen P, Robitaille AM, Chapman DP,
Moon RT and Murry CE: Quantitative proteomics identify DAB2 as a
cardiac developmental regulator that inhibits WNT/β-catenin
signaling. Proc Natl Acad Sci USA. 113:1002–1007. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen TS, Lai RC, Lee MM, Choo AB, Lee CN
and Lim SK: Mesenchymal stem cell secretes microparticles enriched
in pre-microRNAs. Nucleic Acids Res. 38:215–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cimpeanu RA, Popescu DM, Burada F, Cucu
MG, Gheonea DI, Ioana M and Rogoveanu I: miR-149 rs2292832 C>T
polymorphism and risk of gastric cancer. Rom J Morphol Embryol.
58:125–129. 2017.PubMed/NCBI
|
23
|
Ow SH, Chua PJ and Bay BH: miR-149 as a
potential molecular target for cancer. Curr Med Chem. Jul
18–2017.(Epub ahead of print).
|
24
|
Alipoor B, Meshkani R, Ghaedi H, Sharifi
Z, Panahi G and Golmohammadi T: Association of miR-146a rs2910164
and miR-149 rs2292832 variants with susceptibility to type 2
diabetes. Clin Lab. 62:1553–1561. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
An X, Yang Z and An Z: MiR-149 compromises
the reactions of liver cells to fatty acid via its polymorphism and
increases Non-alcoholic fatty liver disease (NAFLD) risk by
targeting methylene tetrahydrofolate reductase (MTHFR). Med Sci
Monit. 23:2299–2307. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Du J, Cui C, Zhang S, Yang X and Lou J:
Association of MicroRNA-146a and MicroRNA-149 polymorphisms with
strokes in asian populations: An updated meta-analysis. Angiology.
68:863–870. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu JY, Hu F, Du W, Ma XL and Yuan K: Study
of the association between five polymorphisms and risk of
hepatocellular carcinoma: A meta-analysis. J Chin Med Assoc.
80:191–203. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zheng L, Zhuang C, Zhao J and Ming L:
Functional miR-146a, miR-149, miR-196a2 and miR-499 polymorphisms
and the susceptibility to hepatocellular carcinoma: An updated
meta-analysis. Clin Res Hepatol Gastroenterol. 41:664–676. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kaneko M, Satomi T, Fujiwara S, Uchiyama
H, Kusumoto K and Nishimoto T: AT1 receptor blocker azilsartan
medoxomil normalizes plasma miR-146a and miR-342-3p in a murine
heart failure model. Biomarkers. 22:253–260. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu C, Gong Y, Sun A, Zhang Y, Zhang C,
Zhang W, Zhao G, Zou Y and Ge J: The human MTHFR rs4846049
polymorphism increases coronary heart disease risk through
modifying miRNA binding. Nutr Metab Cardiovasc Dis. 23:693–698.
2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Finkielstein CV and Capelluto DG:
Disabled-2: A modular scaffold protein with multifaceted functions
in signaling. Bioessays. 38 Suppl 1:S45–S55. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Adamson SE, Griffiths R, Moravec R,
Senthivinayagam S, Montgomery G, Chen W, Han J, Sharma PR, Mullins
GR, Gorski SA, et al: Disabled homolog 2 controls macrophage
phenotypic polarization and adipose tissue inflammation. J Clin
Invest. 126:1311–1322. 2016. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Z, Chen Y, Tang J and Xie X:
Frequent loss expression of dab2 and promotor hypermethylation in
human cancers: A meta-analysis and systematic review. Pak J Med
Sci. 30:432–437. 2014.PubMed/NCBI
|
34
|
Hannigan A, Smith P, Kalna G, Lo Nigro C,
Orange C, O'Brien DI, Shah R, Syed N, Spender LC, Herrera B, et al:
Epigenetic downregulation of human disabled homolog 2 switches
TGF-beta from a tumor suppressor to a tumor promoter. J Clin
Invest. 120:2842–2857. 2010. View
Article : Google Scholar : PubMed/NCBI
|