Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review)
- Authors:
- Mubashir Hassan
- Qamar Abbas
- Sung‑Yum Seo
- Saba Shahzadi
- Hany Al Ashwal
- Nazar Zaki
- Zeeshan Iqbal
- Ahmed A. Moustafa
-
Affiliations: Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea, Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan, Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan, College of Information Technology, United Arab Emirates University, Al‑Ain 15551, United Arab Emirates, School of Social Sciences and Psychology, Western Sydney University, Sydney, NSW 2751, Australia - Published online on: May 22, 2018 https://doi.org/10.3892/mmr.2018.9044
- Pages: 639-655
This article is mentioned in:
Abstract
Hedden T and Gabrieli JD: Insights into the ageing mind: A view from cognitive neuroscience. Nat Rev Neurosci. 5:87–96. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ganguli M: Depression, cognitive impairment and dementia: Why should clinicians care about the web of causation? Indian J Psychiatry. 51 Suppl 1:S29–S34. 2009.PubMed/NCBI | |
Tarawneh R and Holtzman DM: The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2:a0061482012. View Article : Google Scholar : PubMed/NCBI | |
Burns A and Iliffe S: Alzheimer's disease. BMJ. 338:b1582009. View Article : Google Scholar : PubMed/NCBI | |
Mendez MF: Early-onset alzheimer's disease: Nonamnestic subtypes and type 2 AD. Arch Med Res. 43:677–685. 2012. View Article : Google Scholar : PubMed/NCBI | |
Amaducci LA, Fratiglioni L, Rocca WA, Fieschi C, Livrea P, Pedone D, Bracco L, Lippi A, Gandolfo C, Bino G, et al: Risk factors for clinically diagnosed Alzheimer's disease: A case-control study of an Italian population. Neurology. 36:922–931. 1986. View Article : Google Scholar : PubMed/NCBI | |
Mayeux R: Understanding Alzheimer's disease: Expect more genes and other things. Ann Neurol. 39:689–690. 1996. View Article : Google Scholar : PubMed/NCBI | |
Blennow K, de Leon MJ and Zetterberg H: Alzheimer's disease. Lancet. 368:387–403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Waring SC and Osenberg RN: Genome-wide association studies in Alzheimer disease. Arch Neurol. 65:329–334. 2008. View Article : Google Scholar : PubMed/NCBI | |
Selkoe DJ: Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 399 6738 Suppl:S23–S31. 2008. View Article : Google Scholar | |
Mahley RW, Weisgraber KH and Huang Y: Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci USA. 103:5644–5651. 2006. View Article : Google Scholar : PubMed/NCBI | |
Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS and Roses AD: Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 90:1977–1981. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bertram L and Tanzi ER: Genome-wide association studies in Alzheimer's disease. Hum Mol Genet. 18:R137–R145. 2009. View Article : Google Scholar : PubMed/NCBI | |
Killin LO, Starr JM, Shiue IJ and Russ TC: Environmental risk factors for dementia: A systematic review. BMC Geriatr. 16:1752016. View Article : Google Scholar : PubMed/NCBI | |
Dosunmu R, Wu J, Basha MR and Zawia NH: Environmental and dietary risk factors in Alzheimer's disease. Expert Rev Neurother. 7:887–900. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wenk GL: Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry. 64 Suppl 9:S7–S10. 2003. | |
Tiraboschi P, Sabbagh MN, Hansen LA, Salmon DP, Merdes A, Gamst A, Masliah E, Alford M, Thal LJ and Corey-Bloom J: Alzheimer disease without neocortical neurofibrillary tangles: ‘A second look’. Neurology. 62:1141–1147. 2004. View Article : Google Scholar : PubMed/NCBI | |
Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA and Herms J: Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 26:7212–7221. 2006. View Article : Google Scholar : PubMed/NCBI | |
Turner PR, O'Connor K, Tate WP and Abraham WC: Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 70:1–32. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hooper NM: Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans. 33:335–338. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ohnishi S and Takano K: Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci. 61:511–524. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jope RS and Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29:95–102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hooper C, Killick R and Lovestone S: The GSK3 hypothesis of Alzheimer's disease. J Neurochem. 104:1433–1439. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jope RS, Yuskaitis CJ and Beurel E: Glycogen synthase kinase-3 (GSK3): Inflammation, diseases and therapeutics. Neurochem Res. 32:577–595. 2007. View Article : Google Scholar : PubMed/NCBI | |
Paterson D and Nordberg A: Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 61:75–111. 2000. View Article : Google Scholar : PubMed/NCBI | |
Clader JW and Wang Y: Muscarinic receptor agonists and antagonists in the treatment of Alzheimer's disease. Curr Pharm Des. 11:3353–3361. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Li Y, Zhang C, Zhao Y, Bu G, Xu H and Zhang YW: M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull. 30:295–307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsang SW, Lai MK, Kirvell S, Francis PT, Esiri MM, Hope T, Chen CP and Wong PT: Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer's disease. Neurobiol Aging. 27:1216–1223. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, et al: Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci. 28:10422–10433. 2008. View Article : Google Scholar : PubMed/NCBI | |
Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R, Kong KC, Bottrill A, Mistry S, Wess J, Rosethorne EM, et al: The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci USA. 107:9440–9445. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wevers A and Schröder H: Nicotinic acetylcholine receptors in Alzheimer's disease. J Alzheimers Dis. 1:207–219. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rinne JO, Myllykylä T, Lönnberg P and Marjamäki P: A Postmortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease. Brain Res. 547:167–170. 1991. View Article : Google Scholar : PubMed/NCBI | |
Young JW, Meves JM, Tarantino IS, Caldwell S and Geyer MA: Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice. Genes Brain Behav. 10:720–733. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dziewczapolski G, Glogowski CM, Masliah E and Heinemann SF: Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J Neurosci. 29:8805–8815. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang H, Zhang Z, Li Z, He D, Sokabe M and Chen L: DMXB (GTS-21) ameliorates the cognitive deficits in beta amyloid (25–35(−)) injected mice through preventing the dysfunction of alpha7 nicotinic receptor. J Neurosci Res. 88:1784–1794. 2010.PubMed/NCBI | |
Faghih R, Gfesser GA and Gopalakrishnan M: Advances in the discovery of novel positive allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Recent Pat CNS Drug Discov. 2:99–106. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roncarati R, Scali C, Comery TA, Grauer SM, Aschmi S, Bothmann H, Jow B, Kowal D, Gianfriddo M, Kelley C, et al: Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther. 329:459–468. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gubbins EJ, Gopalakrishnan M and Li J: Alpha7 nAChR-mediated activation of MAP kinase pathways in PC12 cells. Brain Res. 1328:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miwa JM, Stevens TR, King SL, Caldarone BJ, Ibanez-Tallon I, Xiao C, Fitzsimonds RM, Pavlides C, Lester HA, Picciotto MR and Heintz N: The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron. 51:587–600. 2006. View Article : Google Scholar : PubMed/NCBI | |
Turner TJ: Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J Neurosci. 24:11328–11336. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shen JX and Yakel JL: Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin. 30:673–680. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, et al: Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci. 27:10578–10587. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chang KT and Berg DK: Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron. 32:855–865. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Liu QS, Chang KT and Berg DK: Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci. 21:616–625. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ji D, Lape R and Dani JA: Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 31:131–141. 2001. View Article : Google Scholar : PubMed/NCBI | |
Auld DS, Kornecook TJ, Bastianetto S and Quirion R: Alzheimer's disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 68:209–245. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lilja AM, Porras O, Storelli E, Nordberg A and Marutle A: Functional interactions of fibrillar and oligomeric amyloid-β with alpha7 nicotinic receptors in Alzheimer's disease. J Alzheimers Dis. 23:335–347. 2011. View Article : Google Scholar : PubMed/NCBI | |
Claeysen S, Bockaert J and Giannoni P: Serotonin: A new hope in alzheimer's disease? ACS Chem Neurosci. 6:940–943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Geldenhuys WJ and Van der Schyf CJ: Role of serotonin in Alzheimer's disease: A new therapeutic target? CNS Drugs. 25:765–781. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y and Wang Q: Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol. 97:1–13. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Huang XF, Deng C, Meyer B, Wu A, Yu Y, Ying W, Yang GY, Yenari MA and Wang Q: Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced Parkinsonian rats. Synapse. 3:224–230. 2010. View Article : Google Scholar | |
Polter AM and Li X: 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 22:1406–1412. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A and Meltzer HY: Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: A randomized, double-blind, placebo-controlled study. Schizophr Res. 95:158–168. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lai MK, Tsang SW, Francis PT, Keene J, Hope T, Esiri MM, Spence I and Chen CP: Postmortem serotoninergic correlates of cognitive decline in Alzheimer's disease. Neuroreport. 13:1175–1178. 2002. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Alloza M, Hirst WD, Chen CP, Lasheras B, Francis PT and Ramírez MJ: Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer's disease. Neuropsychopharmacology. 29:410–416. 2004. View Article : Google Scholar : PubMed/NCBI | |
Blin J, Baron JC, Dubois B, Crouzel C, Fiorelli M, Attar-Lévy D, Pillon B, Fournier D, Vidailhet M and Agid Y: Loss of brain 5-HT2 receptors in Alzheimer's disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain. 116:497–510. 1993. View Article : Google Scholar : PubMed/NCBI | |
Hasselbalch SG, Madsen K, Svarer C, Pinborg LH, Holm S, Paulson OB, Waldemar G and Knudsen GM: Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol Aging. 29:1830–1838. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lai MK, Tsang SW, Alder JT, Keene J, Hope T, Esiri MM, Francis PT and Chen CP: Loss of serotonin 5HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer's disease. Psychopharmacology (Berl). 179:673–677. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ramírez MJ: 5-HT6 receptors and Alzheimer's disease. Alzheimers Res Ther. 5:152013.PubMed/NCBI | |
Ruat M, Traiffort E, Arrang JM, Tardivel-Lacombe J, Diaz J, Leurs R and Schwartz JC: A novel rat serotonin (5-HT6) receptor: Molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun. 193:268–276. 1993. View Article : Google Scholar : PubMed/NCBI | |
Mitchell ES and Neumaier JF: 5-HT6 receptors: A novel target for cognitive enhancement. Pharmacol Ther. 108:320–333. 2005. View Article : Google Scholar : PubMed/NCBI | |
Perez-García G and Meneses A: Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Phar Biochem Behav. 81:673–682. 2005. View Article : Google Scholar | |
Da Silva Costa V, Duchatelle P, Boulouard M and Dauphin F: Selective 5-HT6 receptor blockade improves spatial recognition memory and reverses age-related deficits in spatial recognition memory in the mouse. Neuropsychopharmacology. 34:488–500. 2009. View Article : Google Scholar : PubMed/NCBI | |
West PJ, Marcy VR, Marino MJ and Schaffhauser H: Activation of the 5-HT(6) receptor attenuates longterm potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience. 164:692–701. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang G and Stackman RW Jr: The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 6:2252015. View Article : Google Scholar : PubMed/NCBI | |
Yun HM and Rhim H: The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol. 20:159–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nichols DE and Nichols CD: Serotonin receptors. Chem Rev. 108:1614–1641. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hirst WD, Stean TO, Rogers DC, Sunter D, Pugh P, Moss SF, Bromidge SM, Riley G, Smith DR, Bartlett S, et al: SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol. 553:109–119. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, et al: Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology. 33:1323–1335. 2008. View Article : Google Scholar : PubMed/NCBI | |
Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y and De Keyser J: Astrocytic beta(2)-adrenergic receptors: From physiology to pathology. Prog Neurobiol. 91:189–199. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shimohama S, Taniguchi T, Fujiwara M and Kameyama M: Biochemical characterization of alphaadrenergic receptors in human brain and changes in Alzheimer-type dementia. J Neurochem. 47:1295–1301. 1986.PubMed/NCBI | |
Kalaria RN and Harik SI: Increased alpha 2- and beta 2-adrenergic receptors in cerebral microvessels in Alzheimer disease. Neurosci Lett. 106:233–238. 1989. View Article : Google Scholar : PubMed/NCBI | |
Russo-Neustadt A and Cotman CW: Adrenergic receptors in Alzheimer's disease brain: Selective increases in the cerebella of aggressive patients. J Neurosci. 17:5573–5580. 1997. View Article : Google Scholar : PubMed/NCBI | |
Contreras F, Fouillioux C, Bolívar A, Simonovis N, Hernández-Hernández R, Armas-Hernandez MJ and Velasco M: Dopamine, hypertension and obesity. J Hum Hypertens. 16 Suppl 1:S13–S17. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nilsson A, Eriksson M, Muly EC, Akesson E, Samuelsson EB, Bogdanovic N, Benedikz E and Sundström E: Analysis of NR3A receptor subunits in human native NMDA receptors. Brain Res. 1186:102–112. 2007. View Article : Google Scholar : PubMed/NCBI | |
Janssen WG, Vissavajjhala P, Andrews G, Moran T, Hof PR and Morrison JH: Cellular and synaptic distribution of NR2A and NR2B in macaque monkey and rat hippocampus as visualized with subunit-specific monoclonal antibodies. Exp Neurol. 191 Suppl 1:S28–S44. 2005. View Article : Google Scholar : PubMed/NCBI | |
Proctor DT, Coulson EJ and Dodd PR: Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease. Prog Neurobiol. 93:509–521. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Zhang J, Zhang L, Liu H, Zhu H and Yang Y: Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 7:268–280. 2010. View Article : Google Scholar : PubMed/NCBI | |
Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P and Canu N: NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci USA. 103:2892–2897. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fortin DA, Davare MA, Srivastava T, Brady JD, Nygaard S, Derkach VA and Soderling TR: Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J Neurosci. 30:11565–11575. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guetg N, Aziz Abdel S, Holbro N, Turecek R, Rose T, Seddik R, Gassmann M, Moes S, Jenoe P, Oertner TG, et al: NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci USA. 107:13924–13929. 2010. View Article : Google Scholar : PubMed/NCBI | |
Silva T, Reis J, Teixeira J and Borges F: Alzheimer's disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res Rev. 15:116–145. 2014. View Article : Google Scholar : PubMed/NCBI | |
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM and Vasić VM: Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol. 11:315–335. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Almeida JP and Saldanha C: Nonneuronal cholinergic system in human erythrocytes: Biological role and clinical relevance. J Membr Biol. 234:227–234. 2010. View Article : Google Scholar : PubMed/NCBI | |
Massoulié J, Pezzementi L, Bon S, Krejci E and Vallette FM: Molecular and cellular biology of cholinesterases. Prog Neurobiol. 41:31–91. 1993. View Article : Google Scholar : PubMed/NCBI | |
Schliebs R and Arendt T: The significance of the cholinergic system in the brain during aging and in Alzheimer's disease. J Neural Transm (Vienna). 113:1625–1644. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schliebs R and Arendt T: The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 221:555–563. 2011. View Article : Google Scholar : PubMed/NCBI | |
Greig NH, Lahiri DK and Sambamurti K: Butyrylcholinesterase: An important new target in Alzheimer's disease therapy. Int Psychogeriatr. 14 Suppl 1:S77–S91. 2002. View Article : Google Scholar | |
Lane RM, Kivipelto M and Greig NH: Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol. 27:141–149. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lane RM, Potkin SG and Enz A: Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 9:101–124. 2006. View Article : Google Scholar : PubMed/NCBI | |
Grossberg GT: Cholinesterase Inhibitors for the treatment of alzheimer's disease: Getting on and staying on. Curr Ther Res Clin Exp. 64:216–235. 2003. View Article : Google Scholar : PubMed/NCBI | |
Francis PT, Palmer AM, Snape M and Wilcock GK: The cholinergic hypothesis of Alzheimer's disease: A review of progress. J Neurol Neurosurg Psychiatry. 66:137–147. 1999. View Article : Google Scholar : PubMed/NCBI | |
Prakash A, Kalra J, Mani V, Ramasamy K and Majeed AB: Pharmacological approaches for Alzheimer's disease: Neurotransmitter as drug targets. Expert Rev Neurother. 15:53–71. 2015. View Article : Google Scholar : PubMed/NCBI | |
Akasofu S, Kimura M, Kosasa T, Sawada K and Ogura H: Study of neuroprotection of donepezil, a therapy for Alzheimer's disease. Chem Biol Interact. 175:222–226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H and Akaike A: Nicotinic acetycholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther. 306:772–777. 2003. View Article : Google Scholar : PubMed/NCBI | |
Farlow M, Veloso F, Moline M, Yardley J, Brand-Schieber E, Bibbiani F, Zou H, Hsu T and Satlin A: Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer's disease. BMC Neurol. 11:572011. View Article : Google Scholar : PubMed/NCBI | |
Barar FSK: Essentials of Pharmacotherapeutics, Antiparkinsonian drugs. 4th edition. S. Chand and Company Ltd.; New Delhi: pp. 1692007 | |
Bai DL, Tang XC and He XC: Huperzine A, a potential therapeutic agent for treatment of Alzheimer's disease. Curr Med Chem. 7:355–374. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Sun L, Wu G, Yi P, Yang F, Zhou L, Zhang X, Li Z, Yang X, Luo H and Qiu M: Rational design and synthesis of highly potent antiacetylcholinesterase activity huperzine A derivatives. Bioorg Med Chem. 17:6937–6941. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wu HM, Zhou RL, Liu GJ and Dong BR: Huperzine A for Alzheimer's disease. Cochrane Database Syst Rev. 16:CD0055922008. | |
Camps PE, El Achab R, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M and Luque FJ: New tacrine-huperzine A hybrids (huprines): Highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease. J Med Chem. 43:4657–4666. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mehta M, Adem A and Sabbagh M: New Acetylcholinesterase Inhibitors for Alzheimer's Disease. Int J Alzheimers Dis. 2012:7289832012.PubMed/NCBI | |
Feng S, Wang Z, He X, Zheng S, Xia Y, Jiang H, Tang X and Bai D: Bis-huperzine B: Highly potent and selective acetylcholinesterase inhibitors. J Med Chem. 48:655–657. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS and Choi JS: Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 32:1433–1438. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni SK and Dhir A: Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res. 24:317–324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Turner AJ, Fisk L and Nalivaeva NN: Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration. Ann N Y Acad Sci. 1035:1–20. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ghosh AK, Gemma S and Tang J: Beta-Secretase as a therapeutic target for Alzheimer's disease. Neurotherapeutics. 5:399–408. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS and Anusuyadevi M: BACE1 in Alzheimer's disease. Clin Chim Acta. 414:171–178. 2012. View Article : Google Scholar : PubMed/NCBI | |
Asai M, Hattori C, Iwata N, Saido TC, Sasagawa N, Szabó B, Hashimoto Y, Maruyama K, Tanuma S, Kiso Y and Ishiura S: The novel beta-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem. 96:533–540. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luo X and Yan R: Inhibition of BACE1 for therapeutic use in Alzheimer's disease. Int J Clin Exp Pathol. 3:618–628. 2010.PubMed/NCBI | |
Hussain I, Hawkins J, Harrison D, Hille C, Wayne G, Cutler L, Buck T, Walter D, Demont E, Howes C, et al: Oral administration of a potent and selective non peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J Neurochem. 100:802–809. 2007. View Article : Google Scholar : PubMed/NCBI | |
Iserloh U, Pan J, Stamford AW, Kennedy ME, Zhang Q, Zhang L, Parker EM, McHugh NA, Favreau L, Strickland C and Voigt J: Discovery of an orally efficaceous 4-phenoxypyrrolidine-based BACE-1 inhibitor. Bioorg Med Chem Lett. 18:418–422. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM, Ghosh AK and Tang J: Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J. 25:775–784. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mangialasche F, Solomon A, Winblad B, Mecocci P and Kivipelto M: Alzheimer's disease: Clinical trials and drug development. Lancet Neurol. 9:702–716. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, et al: Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 76:173–181. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wolfe MS: Inhibition and modulation of gamma-secretase for Alzheimer's disease. Neurotherapeutics. 5:391–398. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lanz TA, Himes CS, Pallante G, Adams L, Yamazaki S, Amore B and Merchant KM: The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther. 305:864–871. 2003. View Article : Google Scholar : PubMed/NCBI | |
Imbimbo BP: Alzheimer's disease: γ-secretase inhibitors. Drug Discov Today. 5:169–175. 2008. | |
De Strooper B, Vassar R and Golde T: The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 6:99–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Panza F, Frisardi V, Imbimbo BP, Capurso C, Logroscino G, Sancarlo D, Seripa D, Vendemiale G, Pilotto A and Solfrizzi V: REVIEW: γ -Secretase inhibitors for the treatment of alzheimer's disease: The current state. CNS Neurosci Ther. 16:272–284. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martone RL, Zho H, Atchison K, Comery T, Xu JZ, Huang X, Gong X, Jin M, Kreft A, Harrison B, et al: Begacestat (GSI-953): A novel, selective thiophene sulphonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer's disease. J Pharmacol Exp Ther. 331:598–608. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hopkins CR: ACS chemical neuroscience molecule spotlight on begacestat (GSI-953). ACS Chem Neurosci. 3:3–4. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han SH and Mook-Jung I: Diverse molecular targets for terapeutic strategies in alzheimer's disease. J Korean Med Sci. 29:893–902. 2014. View Article : Google Scholar : PubMed/NCBI | |
Desire L, Marcade M, Peillon H, Drouin D, Sol O and Pando M: Clinical trials of EHT 0202, a neuroprotective and procognitive alpha-secretase stimulator for Alzheimer's disease. Alzheimers Dement. 5:P255–P256. 2009. View Article : Google Scholar | |
Snow AD, Cummings J, Lake T, Hu Q, Esposito L, Cam J, Hudson M, Smith E and Runnels S: Exebryl-1: A novel small molecule currently in human clinical trials as a disease-modifying drug for the treatment of Alzheimer's disease. Alzheimer's Dement. 5:P4182009. View Article : Google Scholar | |
Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH, Yang F, Chen P, Ubeda OJ, Kim PC, et al: GSK3 inhibitors show benefits in an Alzheimer's disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis. 33:193–206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Pozo A, Frosch MP, Masliah E and Hyman BT: Neuropathological alterations in alzheimer disease. Cold Spring Harb Perspect Med. 1:a0061892011. View Article : Google Scholar : PubMed/NCBI | |
Harper JD and Lansbury PT Jr: Models of amyloid seeding in Alzheimer's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 66:385–407. 1997. View Article : Google Scholar : PubMed/NCBI | |
Inouye H and Kirschner DA: A beta fibrillogenesis: Kinetic parameters for fibril formation from congo red binding. J Struct Biol. 130:123–129. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jarrett JT, Berger EP and Lansbury PT: The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry. 32:4693–4697. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kim JR, Lee Muresan KY and Murphy RM: Urea modulation of beta-amyloid fibril growth: Experimental studies and kinetic models. Protein Sci. 13:2888–2898. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lomakin A, Chung DS, Benedek GB, Kirschner DA and Teplow DB: On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA. 93:1125–1129. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lomakin A, Teplow DB, Kirschner DA and Benedek GB: Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci USA. 94:7942–7947. 1997. View Article : Google Scholar : PubMed/NCBI | |
McLaurin J, Franklin T, Zhang X, Deng J and Fraser PE: Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem. 266:1101–1110. 1999. View Article : Google Scholar : PubMed/NCBI | |
Murphy RM and Pallitto MM: Probing the kinetics of beta-amyloid self-association. J Struct Biol. 130:109–122. 2000. View Article : Google Scholar : PubMed/NCBI | |
Naiki H and Nakakuki K: First-order kinetic model of Alzheimer's beta-amyloid fibril extension in vitro. Lab Invest. 74:374–383. 1996.PubMed/NCBI | |
Tomski SJ and Murphy RM: Kinetics of aggregation of synthetic beta-amyloid peptide. Arch Biochem Biophys. 294:630–638. 1992. View Article : Google Scholar : PubMed/NCBI | |
Walsh DM, Lomakin A, Benedek GB, Condron MM and Teplow DB: Amyloid beta-protein fibrillogenesis: Detection of a protofibrillar intermediate. J Biol Chem. 272:22364–22372. 1997. View Article : Google Scholar : PubMed/NCBI | |
Harper JD, Wong SS, Lieber CM and Lansbury PT Jr: Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer's disease. Biochemistry. 38:8972–8980. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pallitto MM and Murphy RM: A mathematical model of the kinetics of beta-amyloid fibril growth from the denaturated state. Biophys J. 81:1805–1822. 2001. View Article : Google Scholar : PubMed/NCBI | |
Barrow CJ, Yasuda A, Kenny PT and Zagorski MG: Solution conformations and aggregational properties of synthetic amyloid beta peptides of Alzheimer's disease. analysis of circular dichroism spectra. J Mol Biol. 225:1075–1093. 1992. View Article : Google Scholar : PubMed/NCBI | |
Cruz L, Urbanc B, Buldyrev SV, Christie R, Gómez-Isla T, Havlin S, McNamara M, Stanley HE and Hyman BT: Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc Natl Acad Sci USA. 94:7612–7616. 1997. View Article : Google Scholar : PubMed/NCBI | |
Urbanc B, Cruz L, Buldyrev SV, Havlin S, Hyman BT and Stanley HE: Dynamic feedback in an aggregation-disaggregation model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 60:2120–2126. 1999.PubMed/NCBI | |
De Caluwé J and Dupont G: The progression towards Alzheimer's disease described as a bistable switch arising from the positive loop between amyloids and Ca(2+). J Theor Biol. 331:12–18. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ortega F, Stott J, Visser S and Bendtsen C: Interplay between α-, β-, and γ-secretases determines biphasic amyloid-β protein level in the presence of γ-secretases inhibitor. J Biol Chem. 288:785–792. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J, et al: Quantative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease. EMBO J. 31:187–200. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guardia-Laguarta C, Pera M and Lleó A: Gamma-Secretase as a therapeutic target in Alzheimer's disease. Curr Drug Targets. 11:506–517. 2010. View Article : Google Scholar : PubMed/NCBI | |
Anastasio TJ: Data driven modelling of Alzheimer's disease pathogenesis. J Theor Biol. 290:60–72. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anastasio TJ: Exploring the contribution of estrogen to amyloid-beta regulation: A novel multifactorial computational modelling approach. Front Pharmacol. 4:162013. View Article : Google Scholar : PubMed/NCBI | |
Anastasio TJ: Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-β on synaptic plasticity. Front Pharmacol. 5:852014. View Article : Google Scholar : PubMed/NCBI | |
Craft DL, Wein LM and Selkoe DJ: A mathematical model of the impact of novel treatments on the A beta burden in the Alzheimer's brain, CSF and plasma. Bull Math Biol. 64:1011–1031. 2002. View Article : Google Scholar : PubMed/NCBI | |
Proctor CJ and Gray DA: GSK3 and p53-is there a link in Alzheimer's disease? Mol Neurodegener. 5:72010. View Article : Google Scholar : PubMed/NCBI | |
Diem AK, Tan M, Bressloff NW, Hawkes C, Morris AW, Weller RO and Carare RO: A simulation model of periarterial clearance of amyloid-β from the brain. Front Aging Neurosci. 8:182016. View Article : Google Scholar : PubMed/NCBI | |
Proctor CJ, Boche D, Gray DA and Nicoll JA: Investigating interventions in alzheimer's disease with computer simulation models. PLoS ONE. 8:e736312013. View Article : Google Scholar : PubMed/NCBI | |
Kyrtsos CR and Baras JS: Studying the role of ApoE in Alzheimer's disease pathogenesis using a systems biology model. J Bioinform Comput Biol. 11:13420032013. View Article : Google Scholar : PubMed/NCBI | |
Chen C: beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Biochem Biophys Res Commun. 338:1913–1919. 2005. View Article : Google Scholar : PubMed/NCBI | |
Good TA and Murphy RM: Effect of beta-amyloid block of the fast-inactivating K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl Acad Sci USA. 93:15130–15135. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hoffman DA, Magee JC, Colbert CM and Johnston D: K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 387:869–875. 1997. View Article : Google Scholar : PubMed/NCBI | |
Culmone V and Migliore M: Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: A model study suggesting possible treatments. Front Comp Neurosci. 6:522012. | |
Wilson RS, Boyle PA, Yu L, Barnes LL, Schneider JA and Bennett DA: Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology. 81:314–321. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E and Slutsky I: Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci. 12:1567–1576. 2009. View Article : Google Scholar : PubMed/NCBI | |
Parodi J, Sepulveda FJ, Roa J, Opazo C, Inestrosa NC and Aguayo LG: Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem. 285:2506–2514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Romani A, Marchetti C, Bianchi D, Leinekugel X, Poirazi P, Migliore M and Marie H: Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Front Comp Neurosci. 7:12013. | |
Hasselmo ME and Wyble BP: Free recall and recognition in a network model of the hippocampus: Simulating effects of scopolamine on human memory function. Behav Brain Res. 89:1–34. 1997. View Article : Google Scholar : PubMed/NCBI | |
Menschik ED and Finkel LH: Neuromodulatory control hippocampal function: Towards a model of Alzheimer's disease. Artif Intell Med. 13:99–121. 1998. View Article : Google Scholar : PubMed/NCBI | |
Buzsáki G: Two-stage model of memory trace formation: A role for noisy brain states. Neuroscience. 31:551–570. 1989. View Article : Google Scholar : PubMed/NCBI | |
Buzsáki G and Chrobak JJ: Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Curr Opin Neurobiol. 5:504–510. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lisman JE and Idiart MA: Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 267:1512–1515. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lisman J: The theta/gamma discrete phase code occurring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus. 15:913–922. 2005. View Article : Google Scholar : PubMed/NCBI | |
Roberts PD, Spiros A and Geerts H: Simulations of symptomatic treatments for Alzheimer's disease: Computational analysis of pathology and mechanisms of drug action. Alzheimers Res Ther. 4:502012. View Article : Google Scholar : PubMed/NCBI | |
Bianchi D, De Michele P, Marchetti C, Tirozzi B, Cuomo S, Marie H and Migliore M: Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. Hippocampus. 24:165–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cutsuridis V, Cobb S and Graham BP: Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus. 20:423–446. 2010.PubMed/NCBI | |
Horn D, Ruppin E, Usher M and Hermann M: Neural network modeling of memory deterioration in Alzheimer's disease. Neural Comput. 5:736–749. 1993. View Article : Google Scholar | |
Ruppin E and Reggia JA: A neural model of memory impairment in diffuse cerebral atrophy. Br J Psychiatry. 166:19–28. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hasselmo ME: Runaway synaptic modification in models of cortex: Implications for Alzheimer's disease. Neural Netw. 7:13–40. 1994. View Article : Google Scholar | |
Hasselmo ME: A computational model of the progression of Alzheimer's disease. MD Comput. 14:181–191. 1997.PubMed/NCBI | |
Siegle GJ and Hasselmo ME: Using connectionist models to guide assessment of psychological disorder. Psychol Assess. 14:263–278. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya BS, Coyle D and Maguire LP: A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer's Disease. Neural Netw. 24:631–645. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gluck MA, Myers CE, Nicolle MM and Johnson S: Computational models of the hippocampal region: Implications for prediction of risk for Alzheimer's disease in non-demented elderly. Curr Alzheimer Res. 3:247–257. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moustafa AA, Keri S, Herzallah MM, Myers CE and Gluck MA: A neural model of hippocampal-striatal interactions in associative learning and transfer generalization in various neurological and psychiatric patients. Brain Cogn. 74:132–144. 2010. View Article : Google Scholar : PubMed/NCBI | |
McAuley MT, Kenny RA, Kirkwood TB, Wilkinson DJ, Jones JJ and Miller VM: A mathematical model of aging-related and cortisol induced hippocampal dysfunction. BMC Neurosci. 10:262009. View Article : Google Scholar : PubMed/NCBI | |
Jack CR Jr and Holtzman DM: Biomarker modeling of Alzheimer's disease. Neuron. 80:1347–1358. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mayeux R: Biomarkers: Potential uses and limitations. NeuroRx. 1:182–188. 2004. View Article : Google Scholar : PubMed/NCBI | |
Blennow K, Hampel H and Zetterberg H: Biomarkers in amyloid-β immunotherapy trials in Alzheimer's disease. Neuropsychopharmacology. 39:189–201. 2014. View Article : Google Scholar : PubMed/NCBI | |
Blennow K, Zetterberg H and Fagan AM: Fluid biomarkers in alzheimer disease. Cold Spring Harb Perspect Med. 2:a0062212012. View Article : Google Scholar : PubMed/NCBI | |
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, et al: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement. 7:270–279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, et al: Revising the definition of Alzheimer's disease: A new lexicon. Lancet Neurol. 9:1118–1127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B and Phelps CH: Introduction to the recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement. 7:257–262. 2011. View Article : Google Scholar : PubMed/NCBI | |
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement. 7:263–269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Castro-Chavira SA, Fernandez T, Nicolini H, Diaz-Cintra S and Prado-Alcala RA: Genetic markers in biological fluids for aging-related major neurocognitive disorder. Curr Alzheimer Res. 12:200–209. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sonnen JA, Montine KS, Quinn JF, Kaye JA, Breitner JCS and Montine TJ: Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurol. 7:704–714. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dekkers MP, Nikoletopoulou V and Barde YA: Cell biology in neuroscience: Death of developing neurons: New insights and implications for connectivity. J Cell Biol. 203:385–393. 2013. View Article : Google Scholar : PubMed/NCBI | |
Terry RD: Basis of structural Alzheimer disease and some pathogenic conceptsAlzheimer's disease: From molecular biology to therapy. Becker P and Giacobini F: Birkhäuser Publishing Ltd.; Cambridge, MA: pp. 19–23. 1996 | |
Burggren A and Brown J: Imaging markers of structural and functional brain changes that precede cognitive symptoms in risk for Alzheimer's disease. Brain Imaging Behav. 8:251–261. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zlokovic BV: Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci. 12:723–738. 2011. View Article : Google Scholar : PubMed/NCBI | |
Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, Schmansky NJ, Greve DN, Salat DH, Buckner RL, et al: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain. 132:2048–2057. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dickerson BC and Wolk DA: Alzheimer's Disease Neuroimaging Initiative: MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology. 78:84–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hua X, Leow AD, Lee S, Klunder AD, Toga AW, Lepore N, Chou YY, Brun C, Chiang MC, Barysheva M, et al: 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry. Neuroimage. 41:19–34. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, Parikshak N, Hua X, Toga AW, Jack CR Jr, et al: Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls. Neuroimage. 43:59–68. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, Parikshak N, Toga AW, Jack CR Jr, Schuff N, et al: Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls. Neuroimage. 45 1 Suppl:S3–S15. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mirra SS and Markesbery WR: The Neuropathology of Alzheimer's DiseaseAlzheimer's Disease: Cause (s), Diagnosis, Treatment and Care. Khachaturian ZS and Radebaugh TS: CRC press; New York, NY: pp. 111–123. 1996 | |
Price DL: Aging of the brain and dementia of the Alzheimer typePrinciples of Neural Sciences. Kandel ER and Jessel TM: McGraw-Hill; New York, NY: pp. 1149–1168. 2000 | |
Teipel SJ, Bayer W, Alexander GE, Bokde AL, Zebuhr Y, Teichberg D, Müller-Spahn F, Schapiro MB, Möller HJ, Rapoport SI and Hampel H: Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer's disease in relation to dementia severity: Evidence for early neocortical degeneration. Neurobiol Aging. 24:85–94. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xanthakos S, Krishnan KR, Kim DM and Charles HC: Magnetic resonance imaging of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 20:597–626. 1996. View Article : Google Scholar : PubMed/NCBI | |
Moon WJ, Park JY, Yun WS, Jeon JY, Moon YS, Kim H, Kwak KC, Lee JM and Han SH: A comparison of substantia nigra T1 hyperintensity in parkinson's disease dementia, alzheimer's disease and age-matched controls: Volumetric analysis of neuromelanin imaging. Korean J Radiol. 17:633–640. 2016. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Pozo A, Frosch MP, Masliah E and Hyman BT: Neuropathological alterations in alzheimer disease. Cold Spring Harb Perspect Med. 1:a0061892011. View Article : Google Scholar : PubMed/NCBI | |
Avila J, Lim F, Moreno F, Belmonte C and Cuello AC: Tau function and dysfunction in neurons: Its role in neurodegenerative disorders. Mol Neurobiol. 25:213–231. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cole SL and Vassar R: The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener. 2:222007. View Article : Google Scholar : PubMed/NCBI | |
Zetterberg H, Andreasson U, Hansson O, Wu G, Sankaranarayanan S, Andersson ME, Buchhave P, Londos E, Umek RM, Minthon L, et al: Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol. 65:1102–1107. 2008. View Article : Google Scholar : PubMed/NCBI | |
Selkoe DJ: Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol. 6:1054–1061. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, Reinwald LT, Carter D, Felton A, Holtzman DM, et al: Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: A case report. Arch Neurol. 66:1557–1562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Selkoe DJ: Alzheimer's disease: A central role for amyloid. J Neuropathol Exp Neurol. 53:438–447. 1994. View Article : Google Scholar : PubMed/NCBI | |
de Courten-Myers GM: Cerebral amyloid angiopathy and Alzheimer's disease. Neurobiol Ageing. 25:603–604. 2004. View Article : Google Scholar | |
Haglund M, Sjöbeck M and Englund E: Severe cerebral amyloid angiopathy characterizes an underestimated variant of vascular dementia. Dement Geriatr Cogn Disord. 18:132–137. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Shi J, Bailey K and Mann DM: Negative association between amyloid plaques and cerebral amyloid angiopathy in Alzheimer's disease. Neurosci Lett. 352:137–140. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hassan M, Sehgel SA and Sajid R: Regulatory cascade of neuronal loss and glucose metabolism. CNS Neurol Disord Drug Targets. 13:1232–1245. 2014. View Article : Google Scholar : PubMed/NCBI | |
Budinger TF: Neuroimaging Applications for the Study of Alzheimer's DiseaseAlzheimer's Disease: Cause (s), Diagnosis, Treatment and Care. Khachaturian ZS and Radebaugh TS: CRC press; New York, NY: pp. 146–169. 1996 | |
Hoyer S: Oxidative metabolism deficiencies in brains of patients with Alzheimer's disease. Acta Neurol Scand. 94:18–24. 1996. View Article : Google Scholar | |
Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y and Takashima A: Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: Implications for alzheimer's disease. J Neurosci. 24:2401–2411. 2004. View Article : Google Scholar : PubMed/NCBI | |
Evans PH: Free radicals in brain metabolism and pathology. Br Med Bull. 49:577–587. 1993. View Article : Google Scholar : PubMed/NCBI | |
Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S and Müller WE: Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry. 1 Suppl 1:S15–S23. 2003. | |
Baloyannis SJ, Costa V and Michmizos D: Mitochondrial alterations in Alzheimer's disease. Am J Alzheimers Dis Other Demen. 19:89–93. 2004. View Article : Google Scholar : PubMed/NCBI | |
Choi JK, Carreras I, Aytan N, Jenkins-Sahlin E, Dedeoglu A and Jenkins BG: The effects of aging, housing and ibuprofen treatment on brain neurochemistry in a triple transgene Alzheimer's disease mouse model using magnetic resonance spectroscopy and imaging. Brain Res. 1590:85–96. 2014. View Article : Google Scholar : PubMed/NCBI | |
Braak H and Braak E: Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 18:351–357. 1997. View Article : Google Scholar : PubMed/NCBI | |
Haroutunian V, Purohit DP, Perl DP, Marin D, Khan K, Lantz M, Davis KL and Mohs RC: Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Arch Neurol. 56:713–718. 1999. View Article : Google Scholar : PubMed/NCBI | |
Price JL and Morris JC: Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer's disease. Ann Neurol. 45:358–368. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O'Brien PC, Edland SD, Smith GE, Boeve BF, Tangalos EG, et al: Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology. 58:750–757. 2002. View Article : Google Scholar : PubMed/NCBI | |
Senjem ML, Gunter JL, Shiung MM, Petersen RC and Jack CR Jr: Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. Neuroimage. 26:600–608. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tarawneh R, D'Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, et al: Visinin like protein-1: Diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol. 70:274–285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Struyfs H, Van Hecke W, Veraart J, Sijbers J, Slaets S, De Belder M, Wuyts L, Peters B, Sleegers K, Robberecht C, et al: Diffusion kurtosis imaging: A possible MRI biomarker for AD diagnosis? J Alzheimers Dis. 48:937–948. 2015. View Article : Google Scholar : PubMed/NCBI | |
James OG, Doraiswamy PM and Borges-Neto S: PET Imaging of tau pathology in alzheimer's disease and tauopathies. Front Neurol. 6:382015. View Article : Google Scholar : PubMed/NCBI | |
Baird AL, Westwood S and Lovestone S: Blood-based proteomic biomarkers of alzheimer's disease pathology. Front Neurol. 6:2362015. View Article : Google Scholar : PubMed/NCBI | |
Anderso NL and Anderson NG: The human plasma proteome: History, character, and diagnostic prospects. Mol Cell Proteomics. 1:845–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, et al: Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 85:296–302. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lewczuk P, Esselmann H, Bibl M, Paul S, Svitek J, Miertschischk J, Meyrer R, Smirnov A, Maler JM, Klein C, et al: Electrophoretic separation of amyloid beta peptides in plasma. Electrophoresis. 25:3336–3343. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L and Koller M: AN1792(QS-21)-201 Study: Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 64:1563–1572. 2005. View Article : Google Scholar : PubMed/NCBI | |
Frisoni GB and Delacourte A: Neuroimaging outcomes in clinical trials in Alzheimer's disease. J Nutr Health Aging. 13:209–212. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, et al: 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9:363–372. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sperling RA, Jack CR Jr and Aisen PS: Testing the right target and right drug at the right stage. Sci Transl Med. 3:111cm332011. View Article : Google Scholar : PubMed/NCBI | |
Geerts H, Dacks PA, Devanarayan V, Haas M, Khachaturian ZS, Gordon MF, Maudsley S, Romero K and Stephenson D: Brain Health Modeling Initiative (BHMI): Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge. Alzheimers Dement. 12:1014–1021. 2016. View Article : Google Scholar : PubMed/NCBI |