1
|
Argüello JM, Raimunda D and
González-Guerrero M: Metal transport across biomembranes: Emerging
models for a distinct chemistry. J Biol Chem. 287:13510–13517.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Turner RW, Anderson D and Zamponi GW:
Signaling complexes of voltage-gated calcium channels. Channels
(Austin). 5:440–448. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maryon EB, Molloy SA, Ivy K, Yu H and
Kaplan JH: Rate and regulation of copper transport by human copper
transporter 1 (hCTR1). J Biol Chem. 288:18035–18046. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Anderson ER and Shah YM: Iron homeostasis
in the liver. Compr Physiol. 3:315–330. 2013.PubMed/NCBI
|
5
|
Jalloul AH, Szerencsei RT and Schnetkamp
PP: Cation dependencies and turnover rates of the human
K+-dependent Na+-Ca2+ exchangers
NCKX1, NCKX2, NCKX3 and NCKX4. Cell Calcium. 59:1–11. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang H, Lee GS, Yoo YM, Choi KC and Jeung
EB: Sodium/potassium/calcium exchanger 3 is regulated by the
steroid hormones estrogen and progesterone in the uterus of mice
during the estrous cycle. Biochem Biophys Res Commun. 385:279–283.
2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kraev A, Quednau BD, Leach S, Li XF, Dong
H, Winkfein R, Perizzolo M, Cai X, Yang R, Philipson KD and Lytton
J: Molecular cloning of a third member of the potassium-dependent
sodium-calcium exchanger gene family, NCKX3. J Biol Chem.
276:23161–23172. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nilius B and Owsianik G: The transient
receptor potential family of ion channels. Genome Biol. 12:2182011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Park DJ, Kim SH, Nah SS, Lee JH, Kim SK,
Lee YA, Hong SJ, Kim HS, Lee HS, Kim HA, et al: Polymorphisms of
the TRPV2 and TRPV3 genes associated with fibromyalgia in a Korean
population. Rheumatology (Oxford). 55:1518–1527. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kunert-Keil C, Bisping F, Kruger J and
Brinkmeier H: Tissue-specific expression of TRP channel genes in
the mouse and its variation in three different mouse strains. BMC
Genomics. 7:1592006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Perálvarez-Marín A, Doñate-Macian P and
Gaudet R: What do we know about the transient receptor potential
vanilloid 2 (TRPV2) ion channel? FEBS J. 280:5471–5487. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Tsai CY, Liebig JK, Tsigelny IF and Howell
SB: The copper transporter 1 (CTR1) is required to maintain the
stability of copper transporter 2 (CTR2). Metallomics. 7:1477–1487.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Landon CD, Benjamin SE, Ashcraft KA and
Dewhirst MW: A role for the copper transporter Ctr1 in the
synergistic interaction between hyperthermia and cisplatin
treatment. Int J Hyperthermia. 29:528–538. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yi L and Kaler SG: Direct interactions of
adaptor protein complexes 1 and 2 with the copper transporter ATP7A
mediate its anterograde and retrograde trafficking. Hum Mol Genet.
24:2411–2425. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
La Fontaine S and Mercer JF: Trafficking
of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis.
Arch Biochem Biophys. 463:149–167. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Holloway ZG, Velayos-Baeza A, Howell GJ,
Levecque C, Ponnambalam S, Sztul E and Monaco AP: Trafficking of
the Menkes copper transporter ATP7A is regulated by clathrin-,
AP-2-, AP-1-, and Rab22-dependent steps. Mol Biol Cell.
24:1735–1748, S1-S8. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
McKie AT and Barlow DJ: The SLC40
basolateral iron transporter family (IREG1/ferroportin/MTP1).
Pflugers Arch. 447:801–806. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Miret S, Simpson RJ and McKie AT:
Physiology and molecular biology of dietary iron absorption. Annu
Rev Nutr. 23:283–301. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Aguirre P, Mena N, Tapia V, Arredondo M
and Núñez MT: Iron homeostasis in neuronal cells: A role for IREG1.
BMC Neurosci. 6:32005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kelleher T, Ryan E, Barrett S, Sweeney M,
Byrnes V, O'Keane C and Crowe J: Increased DMT1 but not IREG1 or
HFE mRNA following iron depletion therapy in hereditary
haemochromatosis. Gut. 53:1174–1179. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yeh KY, Yeh M, Mims L and Glass J: Iron
feeding induces ferroportin 1 and hephaestin migration and
interaction in rat duodenal epithelium. Am J Physiol Gastrointest
Liver Physiol. 296:G55–G65. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee SM, Attieh ZK, Son HS, Chen H,
Bacouri-Haidar M and Vulpe CD: Iron repletion relocalizes
hephaestin to a proximal basolateral compartment in polarized MDCK
and Caco2 cells. Biochem Biophys Res Commun. 421:449–455. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fuqua BK, Lu Y, Darshan D, Frazer DM,
Wilkins SJ, Wolkow N, Bell AG, Hsu J, Yu CC, Chen H, et al: The
multicopper ferroxidase hephaestin enhances intestinal iron
absorption in mice. PLoS One. 9:e987922014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gaggelli E, Kozlowski H, Valensin D and
Valensin G: Copper homeostasis and neurodegenerative disorders
(Alzheimer's, prion, and Parkinson's diseases and amyotrophic
lateral sclerosis). Chem Rev. 106:1995–2044. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hubner CA and Jentsch TJ: Ion channel
diseases. Hum Mol Genet. 11:2435–2445. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hudson DM, Curtis SB, Smith VC, Griffiths
TA, Wong AY, Scudamore CH, Buchan AM and MacGillivray RT: Human
hephaestin expression is not limited to enterocytes of the
gastrointestinal tract but is also found in the antrum, the enteric
nervous system, and pancreatic {beta}-cells. Am J Physiol
Gastrointest Liver Physiol. 298:G425–G432. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee GS, Choi KC and Jeung EB: K+-dependent
Na+/Ca2+ exchanger 3 is involved in renal active calcium transport
and is differentially expressed in the mouse kidney. Am J Physiol
Renal Physiol. 297:F371–F379. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nose Y, Wood LK, Kim BE, Prohaska JR, Fry
RS, Spears JW and Thiele DJ: Ctr1 is an apical copper transporter
in mammalian intestinal epithelial cells in vivo that is controlled
at the level of protein stability. J Biol Chem. 285:32385–32392.
2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
White C, Lee J, Kambe T, Fritsche K and
Petris MJ: A role for the ATP7A copper-transporting ATPase in
macrophage bactericidal activity. J Biol Chem. 284:33949–33956.
2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kuo YM, Gybina AA, Pyatskowit JW,
Gitschier J and Prohaska JR: Copper transport protein (Ctr1) levels
in mice are tissue specific and dependent on copper status. J Nutr.
136:21–26. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vennekens R, Owsianik G and Nilius B:
Vanilloid transient receptor potential cation channels: An
overview. Curr Pharm Des. 14:18–31. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wolff NA, Liu W, Fenton RA, Lee WK,
Thévenod F and Smith CP: Ferroportin 1 is expressed basolaterally
in rat kidney proximal tubule cells and iron excess increases its
membrane trafficking. J Cell Mol Med. 15:209–219. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tanner MR and Beeton C: Differences in ion
channel phenotype and function between humans and animal models.
Front Biosci (Landmark Ed). 23:43–64. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin JH: Species similarities and
differences in pharmacokinetics. Drug Metab Dispos. 23:1008–1021.
1995.PubMed/NCBI
|
35
|
Chandler K: Canine epilepsy: What can we
learn from human seizure disorders? Vet J. 172:207–217. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Entin-Meer M, Levy R, Goryainov P, Landa
N, Barshack I, Avivi C, Semo J and Keren G: The transient receptor
potential vanilloid 2 cation channel is abundant in macrophages
accumulating at the peri-infarct zone and may enhance their
migration capacity towards injured cardiomyocytes following
myocardial infarction. PLoS One. 9:e1050552014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kiela PR and Ghishan FK: Physiology of
intestinal absorption and secretion. Best Pract Res Clin
Gastroenterol. 30:145–159. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kulbacka J, Choromańska A, Rossowska J,
Weżgowiec J, Saczko J and Rols MP: Cell membrane transport
mechanisms: Ion channels and electrical properties of cell
membranes. Adv Anat Embryol Cell Biol. 227:39–58. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Santoni G, Farfariello V, Liberati S,
Morelli MB, Nabissi M, Santoni M and Amantini C: The role of
transient receptor potential vanilloid type-2 ion channels in
innate and adaptive immune responses. Front Immunol. 4:342013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang H, An BS, Choi KC and Jeung EB:
Change of genes in calcium transport channels caused by hypoxic
stress in the placenta, duodenum, and kidney of pregnant rats. Biol
Reprod. 88:302013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kruger MC and Wolber FM: Osteoporosis:
Modern paradigms for last century's bones. Nutrients. 8:pii: E376.
2016. View Article : Google Scholar
|
43
|
Entin-Meer M, Cohen L, Hertzberg-Bigelman
E, Levy R, Ben-Shoshan J and Keren G: TRPV2 knockout mice
demonstrate an improved cardiac performance following myocardial
infarction due to attenuated activity of peri-infarct macrophages.
PLoS One. 12:e01771322017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hassan S, Eldeeb K, Millns PJ, Bennett AJ,
Alexander SP and Kendall DA: Cannabidiol enhances microglial
phagocytosis via transient receptor potential (TRP) channel
activation. Br J Pharmacol. 171:2426–2439. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Link TM, Park U, Vonakis BM, Raben DM,
Soloski MJ and Caterina MJ: TRPV2 has a pivotal role in macrophage
particle binding and phagocytosis. Nat Immunol. 11:232–239. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Yamashiro K, Sasano T, Tojo K, Namekata I,
Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N, et
al: Role of transient receptor potential vanilloid 2 in LPS-induced
cytokine production in macrophages. Biochem Biophys Res Commun.
398:284–289. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Holzer P: TRP channels in the digestive
system. Curr Pharm Biotechnol. 12:24–34. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sulk M, Seeliger S, Aubert J, Schwab VD,
Cevikbas F, Rivier M, Nowak P, Voegel JJ, Buddenkotte J and
Steinhoff M: Distribution and expression of non-neuronal transient
receptor potential (TRPV) ion channels in rosacea. J Invest
Dermatol. 132:1253–1262. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ohrvik H and Thiele DJ: How copper
traverses cellular membranes through the mammalian copper
transporter 1, Ctr1. Ann N Y Acad Sci. 1314:32–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Collins JF, Hua P, Lu Y and Ranganathan
PN: Alternative splicing of the Menkes copper Atpase (Atp7a)
transcript in the rat intestinal epithelium. Am J Physiol
Gastrointest Liver Physiol. 297:G695–G707. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Linz R, Barnes NL, Zimnicka AM, Kaplan JH,
Eipper B and Lutsenko S: Intracellular targeting of
copper-transporting ATPase ATP7A in a normal and Atp7b-/-kidney. Am
J Physiol Renal Physiol. 294:F53–F61. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Vonk WI, de Bie P, Wichers CG, van den
Berghe PV, van der Plaats R, Berger R, Wijmenga C, Klomp LW and van
de Sluis B: The copper-transporting capacity of ATP7A mutants
associated with Menkes disease is ameliorated by COMMD1 as a result
of improved protein expression. Cell Mol Life Sci. 69:149–163.
2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Pinnix ZK, Miller LD, Wang W, D'Agostino R
Jr, Kute T, Willingham MC, Hatcher H, Tesfay L, Sui G, Di X, et al:
Ferroportin and iron regulation in breast cancer progression and
prognosis. Sci Transl Med. 2:43ra562010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kong WN, Chang YZ, Wang SM, Zhai XL, Shang
JX, Li LX and Duan XL: Effect of erythropoietin on hepcidin, DMT1
with IRE, and hephaestin gene expression in duodenum of rats. J
Gastroenterol. 43:136–143. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Petrak J and Vyoral D: Hephaestin-a
ferroxidase of cellular iron export. Int J Biochem Cell Biol.
37:1173–1178. 2005. View Article : Google Scholar : PubMed/NCBI
|
56
|
Malik IA, Naz N, Sheikh N, Khan S,
Moriconi F, Blaschke M and Ramadori G: Comparison of changes in
gene expression of transferrin receptor-1 and other iron-regulatory
proteins in rat liver and brain during acute-phase response. Cell
Tissue Res. 344:299–312. 2011. View Article : Google Scholar : PubMed/NCBI
|