1
|
Cristancho AG and Lazar MA: Forming
functional fat: A growing understanding of adipocyte
differentiation. Nat Rev Mol Cell Biol. 12:722–734. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
De Coppi P, Bartsch G Jr, Siddiqui MM, Xu
T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ,
et al: Isolation of amniotic stem cell lines with potential for
therapy. Nat Biotechnol. 25:100–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pozzobon M, Piccoli M, Schiavo AA, Atala A
and De Coppi P: Isolation of c-Kit+ human amniotic fluid stem cells
from second trimester. Methods Mol Biol. 1035:191–198. 2013.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kinnaird T, Stabile E, Burnett MS, Lee CW,
Barr S, Fuchs S and Epstein SE: Marrow-derived stromal cells
express genes encoding a broad spectrum of arteriogenic cytokines
and promote in vitro and in vivo arteriogenesis through paracrine
mechanisms. Circ Res. 94:678–685. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
da Silva Meirelles L, Caplan AI and Nardi
NB: In search of the in vivo identity of mesenchymal stem cells.
Stem Cells. 26:2287–2299. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nardi Beyer N and da Silva Meirelles L:
Mesenchymal stem cells: Isolation, in vitro expansion and
characterization. Handb Exp Pharmacol. 249–282. 2006. View Article : Google Scholar
|
7
|
Deans RJ and Moseley AB: Mesenchymal stem
cells: Biology and potential clinical uses. Exp Hematol.
28:875–884. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sanchez-Ramos J, Song S, Cardozo-Pelaez F,
Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W,
Patel N, et al: Adult bone marrow stromal cells differentiate into
neural cells in vitro. Exp Neurol. 164:247–256. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
McLean K, Gong Y, Choi Y, Deng N, Yang K,
Bai S, Cabrera L, Keller E, McCauley L, Cho KR and Buckanovich RJ:
Human ovarian carcinoma-associated mesenchymal stem cells regulate
cancer stem cells and tumorigenesis via altered BMP production. J
Clin Invest. 121:3206–3219. 2011. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L
and Shi Y: One cell, multiple roles: Contribution of mesenchymal
stem cells to tumor development in tumor microenvironment. Cell
Biosci. 3:52013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen S, Wang L, Fan J, Ye C, Dominguez D,
Zhang Y, Curiel TJ, Fang D, Kuzel TM and Zhang B: Host miR155
promotes tumor growth through a myeloid-derived suppressor
cell-dependent mechanism. Cancer Res. 75:519–531. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang J, Yu F, Jia X, Iwanowycz S, Wang Y,
Huang S, Ai W and Fan D: MicroRNA-155 deficiency enhances the
recruitment and functions of myeloid-derived suppressor cells in
tumor microenvironment and promotes solid tumor growth. Int J
Cancer. 136:E602–E613. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ward CL, Sanchez CJ Jr, Pollot BE, Romano
DR, Hardy SK, Becerra SC, Rathbone CR and Wenke JC: Soluble factors
from biofilms of wound pathogens modulate human bone marrow-derived
stromal cell differentiation, migration, angiogenesis, and cytokine
secretion. BMC Microbiol. 15:752015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang D, Liu X, Peng J, He D, Lin T, Zhu
J, Li X, Zhang Y and Wei G: Potential spermatogenesis recovery with
bone marrow mesenchymal stem cells in an azoospermic rat model. Int
J Mol Sci. 15:13151–13165. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tan SL, Ahmad TS, Selvaratnam L and
Kamarul T: Isolation, characterization and the multi-lineage
differentiation potential of rabbit bone marrow-derived mesenchymal
stem cells. J Anat. 222:437–450. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Adamzyk C, Kachel P, Hoss M, Gremse F,
Modabber A, Holzle F, Tolba R, Neuss S and Lethaus B: Bone tissue
engineering using polyetherketoneketone scaffolds combined with
autologous mesenchymal stem cells in a sheep calvarial defect
model. J Craniomaxillofac Surg. 44:985–994. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kocamaz E, Gok D, Cetinkaya A and Tufan
AC: Implication of C-type natriuretic peptide-3 signaling in
glycosaminoglycan synthesis and chondrocyte hypertrophy during
TGF-beta1 induced chondrogenic differentiation of chicken bone
marrow-derived mesenchymal stem cells. J Mol Histol. 43:497–508.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ramírez-Espinosa JJ, González-Dávalos L,
Shimada A, Piña E, Varela-Echavarria A and Mora O: Bovine (bos
taurus) bone marrow mesenchymal cell differentiation to adipogenic
and myogenic lineages. Cells Tissues Organs. 201:51–64. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang M, Wang YH, Ye Q, Meng P, Yin H and
Zhang DL: Serological survey of toxoplasma gondii in tibetan
mastiffs (canis lupus familiaris) and yaks (Bos
grunniens) in Qinghai, China. Parasit Vectors. 5:352012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Messerschmidt GL, Bowles C, Alsaker R,
McCormack K, Corbitt RH, Mosley KR and Deisseroth AB: Prognostic
indicators of tumor response to Staphylococcus aureus Cowan strain
I plasma perfusion. J Natl Cancer Inst. 71:535–538. 1983.PubMed/NCBI
|
21
|
Cui Y, Guo W, Li D, Wang L, Shi CX,
Brookmeyer R, Detels R, Ge L, Ding Z and Wu Z: Estimating HIV
incidence among key affected populations in China from serial
cross-sectional surveys in 2010–2014. J Int AIDS Soc. 19:206092016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Li Q, Liu Z, Li Y, Zhao X, Dong L, Pan Z,
Sun Y, Li N, Xu Y and Xie Z: Origin and phylogenetic analysis of
tibetan mastiff based on the mitochondrial DNA sequence. J Genet
Genomics. 35:335–340. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kijas JW, Miller BJ, Pearce-Kelling SE,
Aguirre GD and Acland GM: Canine models of ocular disease: Outcross
breedings define a dominant disorder present in the English mastiff
and bull mastiff dog breeds. J Hered. 94:27–30. 2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang B, Cheng X, Wang H, Huang W, la Ga
Hu Z, Wang D, Zhang K, Zhang H, Xue Z and Da Y: Mesenchymal stem
cells and their secreted molecules predominantly ameliorate
fulminant hepatic failure and chronic liver fibrosis in mice
respectively. J Transl Med. 14:452016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chouinard L, Martineau D, Forget C and
Girard C: Use of polymerase chain reaction and immunohistochemistry
for detection of canine adenovirus type 1 in formalin-fixed,
paraffin-embedded liver of dogs with chronic hepatitis or
cirrhosis. J Vet Diagn Invest. 10:320–325. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nagamoto Y, Takayama K, Ohashi K, Okamoto
R, Sakurai F, Tachibana M, Kawabata K and Mizuguchi H:
Transplantation of a human iPSC-derived hepatocyte sheet increases
survival in mice with acute liver failure. J Hepatol. 64:1068–1075.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li LH, Zhao YY and Wu XG: Progress in the
study of diabetes in dogs. China Vet J. 8:64–65. 2008.
|
28
|
Samarghandian S, Azimi-Nezhad M, Samini F
and Farkhondeh T: Chrysin treatment improves diabetes and its
complications in liver, brain, and pancreas in
streptozotocin-induced diabetic rats. Can J Physiol Pharmacol.
94:388–393. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chaiyasut C, Kusirisin W, Lailerd N,
Lerttrakarnnon P, Suttajit M and Srichairatanakool S: Effects of
phenolic compounds of fermented thai indigenous plants on oxidative
stress in streptozotocin-induced diabetic rats. Evid Based
Complement Alternat Med. 2011:7493072011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Motta-Silva AC, Aleva NA, Chavasco JK,
Armond MC, Franca JP and Pereira LJ: Erythematous oral candidiasis
in patients with controlled type II diabetes mellitus and complete
dentures. Mycopathologia. 169:215–223. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bai C, Chen S, Gao Y, Shan Z, Guan W and
Ma Y: Multi-lineage potential research of bone marrow mesenchymal
stem cells from Bama miniature pig. J Exp Zool B Mol Dev Evol.
324:671–685. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Anjos-Afonso F and Bonnet D: Isolation,
culture, and differentiation potential of mouse marrow stromal
cells. Curr Protoc Stem Cell Biol Chapter. 2:Unit 2B.3. 2008.
View Article : Google Scholar
|
33
|
Majumdar MK, Banks V, Peluso DP and Morris
EA: Isolation, characterization, and chondrogenic potential of
human bone marrow-derived multipotential stromal cells. J Cell
Physiol. 185:98–106. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Reyes M, Lund T, Lenvik T, Aguiar D,
Koodie L and Verfaillie CM: Purification and ex vivo expansion of
postnatal human marrow mesodermal progenitor cells. Blood.
98:2615–2625. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang S, Bai CY, Ma YH, Li XC, Gao YH, Fan
YN, Wei JG and Zheng D: The characterisation and functional β-cell
differentiation of duck pancreas-derived mesenchymal cells. Br
Poult Sci. 57:201–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lv FJ, Tuan RS, Cheung KM and Leung VY:
Concise review: The surface markers and identity of human
mesenchymal stem cells. Stem Cells. 32:1408–1419. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Noort WA, Oerlemans MI, Rozemuller H,
Feyen D, Jaksani S, Stecher D, Naaijkens B, Martens AC, Bühring HJ,
Doevendans PA and Sluijter JP: Human versus porcine mesenchymal
stromal cells: Phenotype, differentiation potential,
immunomodulation and cardiac improvement after transplantation. J
Cell Mol Med. 2012.16:1827–1839. View Article : Google Scholar : PubMed/NCBI
|