1
|
Jaul E, Malcov T and Menczel J:
Osteoporosis in tube-fed bed-ridden elderly female patients. J Am
Geriatr Soc. 57:1318–1320. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
vico L, Collet P, Guiqnandon A,
Lafaqe-Proust MH, Thomas T, Rehaillia M and Alexandre C: Effects of
long-term microgravity exposure on cancellous and cortical
weight-bearing bones of cosmonauts. Lancet. 355:1607–1611. 2000.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Landis WJ, Hodgens KJ, Block D, Toma CD
and Gerstenfeld LC: Spaceflight effects oncultured embryonic chick
bone cells. J Bone Miner Res. 15:1099–1112. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tavella S, Ruggiu A, Giuliani A, Brun F,
Canciani B, Manescu A, Marozzi K, Cilli M, Costa D, Liu Y, et al:
Bone turnover in wild type and pleiotrophin-transgenicmice housed
for three months in the International Space Station (ISS). PLoS
One. 7:e331792012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Manolagas SC: Birth and death of bone
cells: Basic regulatory mechanisms and implications for the
pathogenesis and treatment of osteoporosis. Endocr Rev. 21:115–137.
2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Judex S, Gupta S and Rubin C: Regulation
of mechanical signals in bone. Orthod Craniofac Res. 12:94–104.
2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Khosla S, Westendorf JJ and Oursler MJ:
Building bone to reverse osteoporosis and repair fractures. J Clin
Invest. 118:421–428. 2008. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Rodan GA and Martin TJ: Therapeutic
approaches to bone diseases. Science. 289:1508–1514. 2000.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hillam RA and Skerry TM: Inhibition of
bone resorptionand stimulation of formation by mechanical loading
of the modeling rat ulna in vivo. J Bone Miner Res. 10:683–689.
1995. View Article : Google Scholar : PubMed/NCBI
|
10
|
Frost HM: Bone ‘mass’ and the
‘mechanostat’: A proposal. Anat Rec. 219:1–9. 1987. View Article : Google Scholar : PubMed/NCBI
|
11
|
Frost HM: Defining osteopenias and
osteoporoses: Another view (with insights from a new paradigm).
Bone. 20:385–391. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Robling AG, Hinant FM, Burr DB and Turner
CH: Improved bone structure and strength after long-term mechanical
loading is greatest if loading is separated into short bouts. J
Bone Miner Res. 17:1545–1554. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kaspar D, Seidl W, Neidlinger-Wilke C,
Beck A, Claes L and Ignatius A: Proliferation of human-derived
osteoblast-like cells depends on the cycle number and frequency of
uniaxial strain. J Biomech. 35:873–880. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li H, Li RX, Wan ZM, Xu C, Li JY, Hao QX,
Guo Y, Liu L and Zhang XZ: Counter-effect of constrained dynamic
loading on osteoporosis in ovariectomized mice. J Biomech.
46:1242–1247. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nie J, Liu L, He F, Fu X, Han W and Zhang
L: CKIP-1: A scaffold protein and potential therapeutic target
integrating multiple signaling pathways and physiological
functions. Ageing Res Rev. 12:276–281. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu K, Yin X, Weng T, Xi S, Li L, Xing G,
Cheng X, Yang X, Zhang L and He F: Targeting WW domains linker of
HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat
Cell Biol. 10:994–1002. 2008. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Baas D, Caussanel-Boude S, Guiraud A,
Calhabeu F, Delaune-Henry E, Pilot F, Chopin E, Machuca-Gayet I,
Vernay A, Bertrand S, et al: CKIP-1regulates mammalian and
zebrafish myoblast fusion. J Cell Sci. 125:3790–3800. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou ZC, Lei C, Liang K, Lei DL, Rui L and
Yang XJ: CKIP-1 silencing promotes new bone formation in rat
mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol
Oral Radiol. 123:e1–e9. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Guo B, Zhang B, Zheng L, Tang T, Liu J, Wu
H, Yang Z, Peng S, He X, Zhang H, et al: Therapeutic RNA
interference targeting CKIP-1 with a cross-species sequence to
stimulate bone formation. Bone. 59:76–88. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang L, Zhou Q, Song W, Wu K, Zhang Y and
Zhao Y: Dual-functionalized graphene oxide based siRNA delivery
system for implant surface biomodification with enhanced
osteogenesis. ACS Appl Mater Interfaces. 9:34722–34735. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
NASA: Strong bones and fewer renal stones
for astronauts, . International Space Station Program Science
Office, NASA's Johnson Space Center. https://www.nasa.gov/mission_pages/station/research/news/Strong_Bones.htmlFebruary
24–2012
|
22
|
Wang QS, Zhang XC, Li RX, Sun JG, Su WH,
Guo Y, Li H and Zhang XZ: A comparative study of mechanical strain,
icariin and combination stimulations on improving osteoinductive
potential via NF-kappaB activation in osteoblast-like cells. Biomed
Eng Online. 21:462015. View Article : Google Scholar
|
23
|
Wang QS, Wang GF, Lu YR, Cui YL, Li H, Li
RX, Zhang XZ, Zhang CQ and Liu TJ: The combination of icariin and
constrained dynamic loading stimulation attenuates bone loss in
ovariectomy-induced osteoporotic mice. J Orthop Res. 36:1415–1424.
2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tatsumi S, Ishii K, Amizuka N, Li M,
Kobayashi T, Kohno K, Ito M, Takeshita S and Ikeda K: Targeted
ablation of osteocytes induces osteoporosis with defective
mechanotransduction. Cell Metab. 5:464–475. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Liu W, Masuyama R, Fukuyama R, Ito
M, Zhang Q, Komori H, Murakami T, Moriishi T, Miyazaki T, et al:
Pyruvate dehydrogenase kinase 4 induces bone loss at unloading by
promoting osteoclastogenesis. Bone. 50:409–419. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C (T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Allen DL, Bandstra ER, Harrison BC, Thorng
S, Stodiec LS, Kostenui PJ, Moro S, Lacey DL, Hammond TG, Leinwand
LL, et al: Effects of spaceflight on murine skeletal muscle gene
expression. J Appl Physiol (1985). 106:582–595. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hatton DC, Yue Q, Dierickx J, Roullet C,
Otsuka K, Watanabe M, Coste S, Roullet JB, Phanouvang T, Orwoll E,
et al: Calcium metabolism and cardiovascular function after
spaceflight. J Appl Physiol (1985). 92:3–12. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Crucian B and Sams C: Immune system
dysregulation during spaceflight: Clinical risk for
exploration-class missions. J Leukoc Biol. 86:1017–10118. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang X, Wang Q, Wan Z, Li J, Liu L and
Zhang X: CKIP-1 knockout offsets osteoporosis induced by simulated
microgravity. Prog Biophys Mol Biol. 122:140–148. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu L, Guo Y, Chen X, Li R, Li Z, Wang L,
Wan Z, Li J, Hao Q, Li H and Zhang X: Three-dimensional dynamic
culture of pre-osteoblasts seeded in HA-CS/Col/nHAP composite
scaffolds and treated with alpha-ZAL. Acta Biochim Biophys Sin
(Shanghai). 44:669–677. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Guo Y, Zhang CQ, Zeng QC, Li RX, Liu L,
Hao QX, Shi CH, Zhang XZ and Yan YX: Mechanical strain promotes
osteoblast ECM formation and improves its osteoinductive potential.
Biomed Eng Online. 11:12012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Q, Guo Y, Wang Y, Zou X and Yan Z:
miR-985p promotes osteoblast differentiation in MC3T3E1 cells by
targeting CKIP-1. Mol Med Rep. 17:4797–4802. 2018.PubMed/NCBI
|
34
|
Barger-Lux MJ and Recker RR: Bone
microstructure in osteoporosis: Transilial biopsy and
histomorphometry. Top Magn Reson Imaging. 13:297–305. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Sturmer EK, Seidlova-Wuttke D, Sehmisch S,
Rack T, Wille J, Frosch KH, Wuttke W and Stürmer KM: Standardized
bending and breaking test for the normal and osteoporotic
metaphyseal tibias of the rat: Effect of estradiol, testosterone
and raloxifene. J Bone Miner Res. 21:89–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li J, Yang S, Li X, Liu D, Wang Z, Guo J,
Tan N, Gao Z, Zhao X, Zhang J, et al: Role of endoplasmic reticulum
stress in disuse osteoporosis. Bone. 97:2–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun LW, Luan HQ, Huang YF, Wang Y and Fan
YB: Effects of local vibration on bone loss in -tail-suspended
rats. Int J Sports Med. 35:615–624. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M,
Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, et al: Bone
morphogeneticprotein (BMP) signaling in development and human
diseases. Genes Dis. 1:87–105. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nohe A, Keating E, Knaus P and Petersen
NO: Signal transductionof bone morphogenetic protein receptors.
Cell Signal. 16:291–299. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cicciù M: Real opportunity for the present
and a forward step for the future of bone tissue engineering. J
Craniofac Surg. 28:592–593. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Herford AS and Cicciù M: Recombinant human
bone morphogenetic protein type 2 jaw reconstruction in patients
affected by giant cell tumor. J Craniofac Surg. 21:1970–1975. 2010.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Herford AS, Cicciù M, Eftimie LF, Miller
M, Signorino F and Famà F: Rhbmp-2 applied as support of
distraction osteogenesis: A split-mouth histological study over
nonhuman primates mandibles. Int J Clin Exp Med. 9:17187–17194.
2016.
|
43
|
Nakashima K, Zhou X, Kunkel G, Zhang Z,
Deng JM, Behringer RR and Crombrugghe B: The novel
zincfinger-containing transcription factor osterix is required
forosteoblast differentiation and bone formation. Cell. 108:17–29.
2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et
al: Osteoprotegerin: A novel secreted protein involved in
theregulation of bone density. Cell. 89:309–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yasuda H, Shima N, Nakagawa N, Mochizuki
SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, et
al: Identity of osteoclastogenesis inhibitory factor (OCIF) and
osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits
osteoclastogenesis in vitro. Endocrinology. 139:1329–1337. 1998.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Ferrari-Lacraz S and Ferrari S: Do RANKL
inhibitors (denosumab) affect inflammationand immunity?
OsteoporosInt. 22:435–446. 2011. View Article : Google Scholar
|
47
|
Kuhn MC, Willenberg HS, Schott M,
Papewalis C, Stumpf U, Flohé S, Scherbaum WA and Schinner S:
Adipocytesecreted factors increase osteoblast proliferation and the
OPG/RANKL ratio to influence osteoclast formation. Mol Cell
Endocrinol. 349:180–188. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang L, Zhang XZ, Guo Y, Chen XZ, Li RX,
Liu L, Shi CH, Guo C and Zhang Y: Involvement of BMPs/Smad
signaling pathway in mechanical response in osteoblasts. Cell
Physiol Biochem. 26:1093–1102. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Olsten ME, Weber JE and Litchfield DW: CK2
interacting proteins: Emerging paradigms for CK2 regulation? Mol
Cell Biochem. 274:115–124. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Song DH, Dominguez I, Mizuno J, Kaut M,
Mohr SC and Seldin DC: CK2 phosphorylation of the armadillo
repeatregion of beta-catenin potentiates Wnt signaling. J Biol
Chem. 278:24018–24025. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Jansen JH, Eijken M, Jahr H, Chiba H,
Verhaar JA, van Leeuwen JP and Weinans H: Stretch-induced inhibited
of Wnt/bete-catenin signaling in mineralizing osteoblasts. J Orthop
Res. 28:390–396. 2010.PubMed/NCBI
|
52
|
Yu HC, Wu TC, Chen MR, Liu SW, Chen JH and
Lin KM: Mechanical stretching induces osteoprotegerin in
differentiating C2C12 precursor cells through noncanonical Wnt
pathways. J Bone Miner Res. 25:1128–1137. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Barry PL: Good vibrations: a new treatment
study by NASA-funded doctors could reverse bone loss experienced by
astronauts in space. https://science.nasa.gov/science-news/science-at-nasa/2001/ast02nov_1/November
2–2001
|
54
|
Goodship AE, Cunningham JL, Oganov V,
Darling J, Miles AW and Owen GW: Bone loss during long term space
flight is prevented by the application of a short term impulsive
mechanical stimulus. Acta Astronaut. 43:65–75. 1998. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang G, Guo B, Wu H, Tang T, Zhang BT,
Zheng L, He Y, Yang Z, Pan X, Chow H, et al: A delivery system
targeting bone formation surfaces to facilitate RNAi-based anabolic
therapy. Nat Med. 18:307–314. 2012. View Article : Google Scholar : PubMed/NCBI
|