1
|
Behin A, Hoang-Xuan K, Carpentier AF and
Delattre JY: Primary brain tumours in adults. Lancet. 361:323–331.
2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Goodenberger ML and Jenkins RB: Genetics
of adult glioma. Cancer Genet. 205:613–621. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Claus EB, Walsh KM, Wiencke JK, Molinaro
AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R and
Wrensch M: Survival and low-grade glioma: The emergence of genetic
information. Neurosurgi Focus. 38:E62015. View Article : Google Scholar
|
4
|
Gage FH: Mammalian neural stem cells.
Science. 287:1433–1438. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Snyder EY and Macklis JD: Multipotent
neural progenitor or stem-like cells may be uniquely suited for
therapy for some neurodegenerative conditions. Clin Neurosci.
3:310–316. 1995.PubMed/NCBI
|
6
|
Ourednik J, Ourednik V, Lynch WP,
Schachner M and Snyder EY: Neural stem cells display an inherent
mechanism for rescuing dysfunctional neurons. Nat Biotechnol.
20:1103–1110. 2002. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Shah K, Bureau E, Kim DE, Yang K, Tang Y,
Weissleder R and Breakefield XO: Glioma therapy and real-time
imaging of neural precursor cell migration and tumor regression.
Ann Neurol. 57:34–41. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yamanaka R, Yajima N, Abe T, Tsuchiya N,
Homma J, Narita M, Takahashi M and Tanaka R: Dendritic cell-based
glioma immunotherapy (Review). Int J Oncol. 23:5–15.
2003.PubMed/NCBI
|
9
|
Luo Y, Zhu D, Dang DH, Huang J, Tang Y,
Luo X and Wang S: A double-switch cell fusion-inducible transgene
expression system for neural stem cell-based antiglioma gene
therapy. Stem Cell Int. 2015:6490802015.
|
10
|
Wang L, Wei B, Hu G, Wang L, Jin Y and Sun
Z: Gene expression analyses to explore the biomarkers and
therapeutic targets for gliomas. Neurol Sci. 36:403–409. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Gravendeel LA, Kouwenhoven MC, Gevaert O,
Rooi JJ, Stubbs AP, Duijm JE, Daemen A, Bleeker FE, Bralten LB,
Kloosterhof NK, et al: Intrinsic gene expression profiles of
gliomas are a better predictor of survival than histology. Cancer
Res. 69:9065–9072. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen H, Huang Q, Zhai DZ, Dong J, Wang AD
and Lan Q: CDK1 expression and effects of CDK1 silencing on the
malignant phenotype of glioma cells. Zhonghua Zhong Liu Za Zhi.
29:484–488. 2007.(In Chinese). PubMed/NCBI
|
13
|
Xu Y, Wang Z, Wang J, Li J, Wang H and Yue
W: Lentivirus-mediated knockdown of cyclin Y (CCNY) inhibits glioma
cell proliferation. Oncol Res. 18:359–364. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Freije WA, Castrovargas FE, Fang Z,
Horvath S, Cloughesy T, Liau LM, Mischel PS and Nelson SF: Gene
expression profiling of gliomas strongly predicts survival. Cancer
Res. 64:6503–6510. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ebert MS and Sharp PA: Roles for microRNAs
in conferring robustness to biological processes. Cell.
149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sempere LF, Freemantle S, Pitha-Rowe I,
Moss E, Dmitrovsky E and Ambros V: Expression profiling of
mammalian microRNAs uncovers a subset of brain-expressed microRNAs
with possible roles in murine and human neuronal differentiation.
Genome Biol. 5:R132004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang W, Kwon EJ and Tsai LH: MicroRNAs in
learning, memory and neurological diseases. Learn Mem. 19:359–368.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Saugstad JA: MicroRNAs as effectors of
brain function with roles in ischemia and injury, neuroprotection
and neurodegeneration. J Cereb Blood Flow Metab. 30:1564–1576.
2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gabriely G, Wurdinger T, Kesari S, Esau
CC, Burchard J, Linsley PS and Krichevsky AM: MicroRNA 21 promotes
glioma invasion by targeting matrix metalloproteinase regulators.
Mol Cell Biol. 28:5369–5380. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Q, Li X, Zhu Y and Yang P:
MicroRNA-16 suppresses epithelial-mesenchymal transition-related
gene expression in human glioma. Mol Med Rep. 10:3310–3314. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Malzkorn B, Wolter M, Liesenberg F,
Grzendowski M, Stühler K, Meyer HE and Reifenberger G:
Identification and functional characterization of microRNAs
involved in the malignant progression of gliomas. Brain Pathol.
20:539–550. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sandberg CJ, Altschuler G, Jeong J,
Strømme KK, Stangeland B, Murrell W, Grasmo-Wendler UH, Myklebost
O, Helseth E, Vik-Mo EO, et al: Comparison of glioma stem cells to
neural stem cells from the adult human brain identifies
dysregulated Wnt-signaling and a fingerprint associated with
clinical outcome. Exp Cell Res. 319:2230–2243. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Troyanskaya O, Cantor M, Sherlock G, Brown
P, Hastie T, Tibshirani R, Botstein D and Altman RB: Missing value
estimation methods for DNA microarrays. Bioinformatics. 17:520–525.
2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fujita A, Sato JR, Lde Rodrigues O,
Ferreira CE and Sogayar MC: Evaluating different methods of
microarray data normalization. BMC Bioinformatics. 7:4692006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Smyth GK: Limma: Linear models for
microarray dataBioinformatics and computational biology solutions
Using R, Bioconductor. Gentleman R, Carey VJ, Huber W, Irizarry RA
and Dudoit S: Springer New York; New York, NY: pp. 397–420. 2005,
View Article : Google Scholar
|
27
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang DW, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation,
visualization, and integrated discovery. Genome Biol. 4:P32003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Sherlock G: Gene ontology: Tool for the
unification of biology. Canadian Inst Food Sci Technol J.
22:4152009.
|
32
|
Ogata H, Goto S, Sato K, Fujibuchi W, Bono
H and Kanehisa M: KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 27:29–34. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Giot L, Bader JS, Brouwer C, Chaudhuri A,
Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, et al: A protein
interaction map of Drosophila melanogaster. Science. 302:1727–1736.
2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Szklarczyk D, Franceschini A, Kuhn M,
Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork
P, et al: The STRING database in 2011: Functional interaction
networks of proteins, globally integrated and scored. Nucleic Acids
Res. 39:D561–D568. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT analysis toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang B, Kirov S and Snoddy J: WebGestalt:
An integrated system for exploring gene sets in various biological
contexts. Nucleic Acids Res. 33:W741–W748. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Ostrom QT, Bauchet L, Davis FG, Deltour I,
Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh
KM, et al: The epidemiology of glioma in adults: A ‘state of the
science’ review. Neuro Oncol. 17:896–913. 2014. View Article : Google Scholar
|
41
|
Cattin CJ, Düggelin M, Martinez-Martin D,
Gerber C, Müller DJ and Stewart MP: Mechanical control of mitotic
progression in single animal cells. Proc Natl Acad Sci USA.
112:11258–11263. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Maeda K, Mizuno M, Wakabayashi T, Takasu
S, Nagasaka T, Inagaki M and Yoshida J: Morphological assessment of
the development of multinucleated giant cells in glioma by using
mitosis-specific phosphorylated antibodies. J Neurosurg.
98:854–859. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Conde M, Wiedemuth R, Schackert G and
Temme A: Overexpression of Survivin causes aneuploidy, DNA damage
and defective mitosis in glioma cells. The 65th Annual Meeting of
the German Society of Neurosurgery (DGNC). 11–14–May;2014.
|
44
|
Santra M, Santra S and Chopp M:
Doublecortin reduces glioma tumor progression via blocking mitosis
by mitotic spindle catastrophe and inhibition of glioma cell
invasion by depolymerization of actin. Cell Mol Tum Biol.
16:354–360. 2007.
|
45
|
Castedo M, Perfettini JL, Roumier T and
Kroemer G: Cyclin-dependent kinase-1: Linking apoptosis to cell
cycle and mitotic catastrophe. Cell Death Differ. 9:1287–1293.
2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen QF: Expressions of Cyclin B1, CDK1
and 14-3-3 protein in human gliomas and their significance. Sichuan
Med J. 2009.
|
47
|
Battum EY, Brignani S and Pasterkamp RJ:
Axon guidance proteins in neurological disorders. Lancet Neurol.
14:532–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kunapuli P, Lo K, Hawthorn L and Cowell
JK: Reexpression of LGI1 in glioma cells results in dysregulation
of genes implicated in the canonical axon guidance pathway.
Genomics. 95:93–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wong AS and Gumbiner BM:
Adhesion-independent mechanism for suppression of tumor cell
invasion by E-cadherin. J Cell Biol. 161:1191–1203. 2003.
View Article : Google Scholar : PubMed/NCBI
|
50
|
D'Urso PI, D'Urso OF, Storelli C, Catapano
G, Gianfreda CD, Montinaro A, Muscella A and Marsigliante S:
Retrospective protein expression and epigenetic inactivation
studies of CDH1 in patients affected by low-grade glioma. J
Neurooncol. 104:113–118. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yang L, Liu M, Deng C, Gu Z and Gao Y:
Expression of transforming growth factor-β1 (TGF-β1) and E-cadherin
in glioma. Tumour Biol. 33:1477–1484. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nakae J, Kitamura T, Kitamura Y, Biggs WH
III, Arden KC and Accili D: The forkhead transcription factor foxo1
regulates adipocyte differentiation. Dev Cell. 4:119–129. 2003.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Cheng C, Jiao JT, Qian Y, Guo XY, Huang J,
Dai MC, Zhang L, Ding XP, Zong D and Shao JF: Curcumin induces G2/M
arrest and triggers apoptosis via FoxO1 signaling in U87 human
glioma cells. Mol Med Rep. 13:3763–3770. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhao X, Liu Y, Jian Z, Liu X, Chen J, Liu
L, Ping W and Xue Y: GAS5 suppresses malignancy of human glioma
stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochimica et
biophysica acta. 1864:16052017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kuo DH, Robinson KG, Layton AC, Meyers AJ
and Sayler GS: Transcription levels (amoA mRNA-based) and
population dominance (amoA gene-based) of ammonia-oxidizing
bacteria. J Indust Microbiol Biotechnol. 37:751–757. 2010.
View Article : Google Scholar
|
56
|
Wu S, Lin Y, Xu D, Chen J, Shu M, Zhou Y,
Zhu W, Su X, Zhou Y, Qiu P and Yan G: MiR-135a functions as a
selective killer of malignant glioma. Oncogene. 31:3866–3874. 2012.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang T, Shao Y, Chu TY, Huang Hs, Liou
YL, Li Q and Zhou H: Reactive oxygen species-upregulated miR-135a
plays a pivotal role in phenethyl isothiocyanate-induced rat C6
glioma cell apoptosis. Int J Clin Exp Pathol. 9:112016.
|