1
|
Miyata H and Miyata S: Speculation of the
time-dependent change of FIB4 index in patients with nonalcoholic
fatty liver disease: A retrospective study. Can J Gastroenterol
Hepatol. 2018:53230612018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoo W, Gjuka D, Stevenson HL, Song X, Shen
H, Yoo SY, Wang J, Fallon M, Ioannou GN, Harrison SA and Beretta L:
Fatty acids in non-alcoholic steatohepatitis: Focus on
pentadecanoic acid. PLoS One. 12:e01899652017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zheng X, Gong L, Luo R, Chen H, Peng B,
Ren W and Wang Y: Serum uric acid and non-alcoholic fatty liver
disease in non-obesity chinese adults. Lipids Health Dis.
16:2022017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hossain MA, Lee SJ, Park NH, Birhanu BT,
Mechesso AF, Park JY, Park EJ, Lee SP, Youn SJ and Park SC:
Enhancement of lipid metabolism and hepatic stability in
fat-induced obese mice by fermented cucurbita moschata extract.
Evid Based Complement Alternat Med. 2018:39084532018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead
JF and Varghese Z: Inflammatory stress exacerbates lipid
accumulation in hepatic cells and fatty livers of apolipoprotein E
knockout mice. Hepatology. 48:770–781. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tilg H and Moschen AR: Evolution of
inflammation in nonalcoholic fatty liver disease: The multiple
parallel hits hypothesis. Hepatology. 52:1836–1846. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Boutari C, Perakakis N and Mantzoros CS:
Association of adipokines with development and progression of
nonalcoholic fatty liver disease. Endocrinol Metab (Seoul).
33:33–43. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang T, Zhao X, Steer CJ, Yan G and Song
G: A negative feedback loop between microRNA-378 and nrf1 promotes
the development of hepatosteatosis in mice treated with a high fat
diet. Metabolism. April 3–2018.(Epub ahead of print). View Article : Google Scholar :
|
9
|
Ahamid M, Mahroum N, Bragazzi NL, Shalaata
K, Yavne Y, Adawi M, Amital H and Watad A: Folate and B12 levels
correlate with histological severity in NASH patients. Nutrients.
10:E4402018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang C, Zheng JM, Cheng Q, YU KK, Ling
QX, Chen MQ and LI N: Serum microRNA-29 levels correlate with
disease progression in patients with chronic hepatitis B virus
infection. J Dig Dis. 15:614–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ogawa T, Iizuka M, Sekiya Y, Yoshizato K,
Ikeda K and Kawada N: Suppression of type I collagen production by
microRNA-29b in cultured human stellate cells. Biochem Biophys Res
Commun. 391:316–321. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu D, Green B, Tolleson WH, Jin Y, Mei N,
Guo Y, Deng H, Pogribny I and Ning B: MicroRNA hsa-miR-29a-3p
modulates CYP2C19 in human liver cells. Biochem Pharmacol.
98:215–223. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu D, Tolleson WH, Knox B, Jin Y, Guo L,
Guo Y, Kadlubar SA and Ning B: Modulation of ALDH5A1 and SLC22A7 by
MicroRNA hsa-miR-29a-3p in human liver cells. Biochem Pharmacol.
98:671–680. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu MX, Gao M, Li CZ, Yu CZ, Yan H, Peng
C, Li Y, Li CG, Ma ZL, Zhao Y, et al: Dicer1/miR-29/HMGCR axis
contributes to hepatic free cholesterol accumulation in mouse
non-alcoholic steatohepatitis. Acta Pharmacol Sin. 38:660–671.
2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Willeit P, Skroblin P, Kiechl S,
Fernández-Hernando C and Mayr M: Liver microRNAs: Potential
mediators and biomarkers for metabolic and cardiovascular disease?
Eur Heart J. 37:3260–3266. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Le LT, Swingler TE, Crowe N, Vincent TL,
Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA and Clark IM:
The microRNA-29 family in cartilage homeostasis and osteoarthritis.
J Mol Med (Berl). 94:583–596. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xie J, Wang J and Zhu B: Genistein
inhibits the proliferation of human multiple myeloma cells through
suppression of nuclear factor-κB and upregulation of microRNA-29b.
Mol Med Rep. 13:1627–1632. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang S, Wang Z, Zhu J, Xu T, Zhao Y, Zhao
H, Tang F, Li Z, Zhou J, Gao D, et al: Carnosic acid alleviates
BDL-induced liver fibrosis through miR-29b-3p-Mediated inhibition
of the high-mobility group box 1/toll-like receptor 4 signaling
pathway in rats. Front Pharmacol. 8:9762018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Maegdefessel L, Azuma J and Tsao PS:
MicroRNA-29b regulation of abdominal aortic aneurysm development.
Trends Cardiovasc Med. 24:1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Franceschetti T, Kessler CB, Lee SK and
Delany AM: miR-29 promotes murine osteoclastogenesis by regulating
osteoclast commitment and migration. J Biol Chem. 288:33347–33360.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kwon JJ, Nabinger SC, Vega Z, Sahu SS,
Alluri RK, Abdul-Sater Z, Yu Z, Gore J, Nalepa G, Saxena R, et al:
Pathophysiological role of microRNA-29 in pancreatic cancer stroma.
Sci Rep. 5:114502015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Qin L, Li R, Zhang J, Li A and Luo R:
Special suppressive role of miR-29b in HER2-positive breast cancer
cells by targeting Stat3. Am J Transl Res. 7:878–890.
2015.PubMed/NCBI
|
24
|
Wang L, Dong F, Reinach PS, He D, Zhao X,
Chen X, Hu DN and Yan D: MicroRNA-182 suppresses HGF/SF-induced
increases in retinal pigment epithelial cell proliferation and
migration through targeting c-Met. PLoS One. 11:e01676842016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hudson MB, Rahnert JA, Zheng B,
Woodworth-Hobbs ME, Franch HA and Price SR: miR-182 attenuates
atrophy-related gene expression by targeting FoxO3 in skeletal
muscle. Am J Physiol Cell Physiol. 307:C314–C319. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tessitore A, Cicciarelli G, Vecchio FD,
Gaggiano A, Verzella D, Fischietti M, Mastroiaco V, Vetuschi A,
Sferra R, Barnabei R, et al: MicroRNA expression analysis in high
fat diet-induced NAFLD-NASH-HCC progression: Study on C57BL/6J
mice. BMC Cancer. 16:32016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huynh C, Segura MF, Gaziel-Sovran A,
Menendez S, Darvishian F, Chiriboga L, Levin B, Meruelo D, Osman I,
Zavadil J, et al: Efficient in vivo microRNA targeting of liver
metastasis. Oncogene. 30:1481–1488. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hirata H, Ueno K, Shahryari V, Deng G,
Tanaka Y, Tabatabai ZL, Hinoda Y and Dahiya R: MicroRNA-182-5p
promotes cell invasion and proliferation by down regulating FOXF2,
RECK and MTSS1 genes in human prostate cancer. PLoS One.
8:e555022013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Peng Z, Pan L, Niu Z, Li W, Dang X, Wan L,
Zhang R and Yang S: Identification of microRNAs as potential
biomarkers for lung adenocarcinoma using integrating genomics
analysis. Oncotarget. 8:64143–64156. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhu YJ, Xu B and Xia W: Hsa-mir-182
downregulates RASA1 and suppresses lung squamous cell carcinoma
cell proliferation. Clin Lab. 60:155–159. 2014.PubMed/NCBI
|
31
|
Zhang L, Liu T, Huang Y and Liu J:
microRNA-182 inhibits the proliferation and invasion of human lung
adenocarcinoma cells through its effect on human cortical
actin-associated protein. Int J Mol Med. 28:381–388.
2011.PubMed/NCBI
|
32
|
Wang M, Wang Y, Zang W, Wang H, Chu H, Li
P, Li M, Zhang G and Zhao G: Downregulation of microRNA-182
inhibits cell growth and invasion by targeting programmed cell
death 4 in human lung adenocarcinoma cells. Tumor Biol. 35:39–46.
2014. View Article : Google Scholar
|
33
|
Ning FL, Wang F, Li ML, Yu ZS, Hao YZ and
Chen SS: MicroRNA-182 modulates chemosensitivity of human non-small
cell lung cancer to cisplatin by targeting PDCD4. Diagn Pathol.
9:1432014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang WB, Chen PH, Hsu T I, Fu TF, Su WC,
Liaw H, Chang WC and Hung JJ: Sp1-mediated microRNA-182 expression
regulates lung cancer progression. Oncotarget. 5:740–753. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Moskwa P, Buffa FM, Pan Y, Panchakshari R,
Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K,
Weinstock DM, et al: miR-182-mediated downregulation of BRCA1
impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell.
41:210–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang W, Qian P, Zhang X, Zhang M, Wang H,
Wu M, Kong X, Tan S, Ding K, Perry JK, et al: Autocrine/paracrine
human growth hormone-stimulated MicroRNA 96–182–183 cluster
promotes epithelial-mesenchymal transition and invasion in breast
cancer. J Biol Chem. 290:13812–13829. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu H, Wang Y, Li X, Zhang YJ, Li J, Zheng
YQ, Liu M, Song X and Li XR: Expression and regulatory function of
miRNA-182 in triple-negative breast cancer cells through its
targeting of profilin 1. Tumor Biol. 34:1713–1722. 2013. View Article : Google Scholar
|
38
|
Lei R, Tang J, Zhuang X, Deng R, Li G, Yu
J, Liang Y, Xiao J, Wang HY, Yang Q and Hu G: Suppression of MIM by
microRNA-182 activates RhoA and promotes breast cancer metastasis.
Oncogene. 33:1287–1296. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Spitschak A, Meier C, Kowtharapu B,
Engelmann D and Pütze BM: MiR-182 promotes cancer invasion by
linking RET oncogene activated NF-kB to loss of the HES1/Notch1
regulatory circuit. Mol Cancer. 16:242017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yang MH, Yu J, Jiang DM, Li WL, Wang S and
Ding YQ: microRNA-182 targets special AT-rich sequence-binding
protein 2 to promote colorectal cancer proliferation and
metastasis. J Transl Med. 12:1092014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xu X, Wu J, Li S, Hu Z, Xu X, Zhu Y, Liang
Z, Wang X, Lin Y, Mao Y, et al: Downregulation of microRNA-182-5p
contributes to renal cell carcinoma proliferation via activating
the AKT/FOXO3a signalingpathway. Mol cancer. 13:1092014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H,
Zhang Y and Yuan X: The downregulation of MiR-182 is associated
with the growth and invasion of osteosarcoma cells through the
regulation of TIAM1 expression. PLoS One. 10:e01211752015.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen Q, Yang L, Xiao Y, Zhu J and Li Z:
Circulating microRNA-182 in plasma and its potential diagnostic and
prognostic value for pancreatic cancer. Med Oncol. 31:2252014.
View Article : Google Scholar : PubMed/NCBI
|
44
|
El Sobky SA, El-Ekiaby NM, Mekky RY,
Elemam NM, Eldin Mohey MA, El-Sayed M, Esmat G and Abdelaziz AI:
Contradicting roles of miR-182 in both NK cells and their host
target hepatocytes in HCV. Immunol Lett. 169:52–60. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Li Y, Li S, Yan J, Wang D, Yin R, Zhao L,
Zhu Y and Zhu X: miR-182(microRNA-182) suppression in the
hippocampus evokes antidepressant-like effects in rats. Prog
Neuropsychopharmacol Biol Psychiatry. 65:96–103. 2016. View Article : Google Scholar : PubMed/NCBI
|