1
|
Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS,
Wang LX, Gao Z, Zhang HQ, Huang WJ and Zhou H: Relaxin inhibits
cardiac fibrosis and endothelial-mesenchymal transition via the
Notch pathway. Drug Des Devel Ther. 9:4599–4611. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhao Y, Vanhoutte PM and Leung SW:
Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 129:83–94.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Park KH and Park WJ: Endothelial
dysfunction: Clinical implications in cardiovascular disease and
therapeutic approaches. J Korean Med Sci. 30:1213–1225. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bonetti PO, Lerman LO and Lerman A:
Endothelial dysfunction: A marker of atherosclerotic risk.
Arterioscler Thromb Vasc Biol. 23:168–175. 2002. View Article : Google Scholar
|
5
|
Husain K, Hernandez W, Ansari RA and
Ferder L: Inflammation, oxidative stress and renin angiotensin
system in atherosclerosis. World J Biol Chem. 6:209–217. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Alkaitis MS and Crabtree MJ: Recoupling
the cardiac nitric oxide synthases: Tetrahydrobiopterin synthesis
and recycling. Curr Heart Fail Rep. 9:200–210. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fukai T: Endothelial GTPCH in eNOS
uncoupling and atherosclerosis. Arterioscler Thromb Vasc Biol.
27:1493–1495. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS,
Drucker DJ and Husain M: Cardioprotective and vasodilatory actions
of glucagon-like peptide 1 receptor are mediated through both
glucagon-like peptide 1 receptor-dependent and -independent
pathways. Circulation. 117:2340–2350. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ussher JR and Drucker DJ: Cardiovascular
biology of the incretin system. Endocr Rev. 33:187–215. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Nadkarni P, Chepurny OG and Holz GG:
Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl
Sci. 121:23–65. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chiquette E, Toth PP, Ramirez G, Cobble M
and Chilton R: Treatment with exenatide once weekly or twice daily
for 30 weeks is associated with changes in several cardiovascular
risk markers. Vasc Health Risk Manag. 8:621–629. 2012.PubMed/NCBI
|
12
|
Simo R, Guerci B, Schernthaner G, Gallwitz
B, Rosas-Guzman J, Dotta F, Festa A, Zhou M and Kiljanski J:
Long-term changes in cardiovascular risk markers during
administration of exenatide twice daily or glimepiride: Results
from the European exenatide study. Cardiovasc Diabetol. 14:1162015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Seufert J and Gallwitz B: The
extra-pancreatic effects of GLP-1 receptor agonists a focus on the
cardiovascular, gastrointestinal and central nervous systems.
Diabetes Obes Metab. 16:673–688. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
d'Uscio LV, Baker TA, Mantilla CB, Smith
L, Weiler D, Sieck GC and Katusic ZS: Mechanism of endothelial
dysfunction in apolipoprotein E-deficient mice. Arterioscler Thromb
Vasc Biol. 21:1017–1022. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wei R, Ma S, Wang C, Ke J, Yang J, Li W,
Liu Y, Hou W, Feng X, Wang G and Hong T: Exenatide exerts direct
protective effects on endothelial cells through the AMPK/Akt/eNOS
pathway in a GLP-1 receptor-dependent manner. Am J Physiol
Endocrinol Metab. 310:E947–E57. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Han L, Yu Y, Sun X and Wang B: Exendin-4
directly improves endothelial dysfunction in isolated aortas from
obese rats through the cAMP or AMPK-eNOS pathways. Diabetes Res
Clin Pract. 97:453–460. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Erdogdu O, Eriksson L, Xu H, Sjoholm A,
Zhang Q and Nystrom T: Exendin-4 protects endothelial cells from
lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol
Endocrinol. 50:229–241. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Alp NJ, McAteer MA, Khoo J, Choudhury RP
and Channon KM: Increased endothelial tetrahydrobiopterin synthesis
by targeted transgenic GTP-cyclohydrolase i overexpression reduces
endothelial dysfunction and atherosclerosis in ApoE-knockout mice.
Arterioscler Thromb Vasc Biol. 24:445–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Erdogdu O, Nathanson D, Sjoholm A, Nystrom
T and Zhang Q: Exendin-4 stimulates proliferation of human coronary
artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent
pathways and requires GLP-1 receptor. Mol Cell Endocrinol.
325:26–35. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cai S, Alp NJ, McDonald D, Smith I, Kay J,
Canevari L, Heales S and Channon KM: GTP cyclohydrolase I gene
transfer augments intracellular tetrahydrobiopterin in human
endothelial cells: effects on nitric oxide synthase activity,
protein levels and dimerisation. Cardiovasc Res. 55:838–849. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Moens AL and Kass DA: Tetrahydrobiopterin
and Cardiovascular Disease. Arterioscler Thromb Vasc Biol.
26:2439–2444. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
National Research Council: Guide for the
Care and Use of laboratory animals. Washington, DC: The National
Academies Press; 1996
|
23
|
Fischer AH, Jacobson KA, Rose J and Zeller
R: Hematoxylin and eosin staining of tissue and cell sections. CSH
Protoc. 2008:2008.
|
24
|
Burrin JM and Price CP: Performance of
three enzymic methods for filter paper glucose determination. Ann
Clin Biochem. 21:411–416. 1984. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jones PM, Salmon DM and Howell SL: Protein
phosphorylation in electrically permeabilized islets of Langerhans.
Efects of Ca2+, cyclic AMP, a phorbol ester and noradrenaline.
Biochem J. 254:397–403. 1988. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fukushima T and Nixon JC: Analysis of
reduced forms of biopterin in biological tissues and fluids. Anal
Biochem. 102:176–188. 1980. View Article : Google Scholar : PubMed/NCBI
|
27
|
Alp NJ, McAteer MA, Khoo J, Choudhury RP
and Channon KM: Increased endothelial tetrahydrobiopterin synthesis
by targeted transgenic GTP-cyclohydrolase I overexpression reduces
endothelial dysfunction and atherosclerosis in ApoE-knockout mice.
Arterioscler Thromb Vasc Biol. 24:445–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ozaki M, Kawashima S, Yamashita T, Hirase
T, Namiki M, Inoue N, Hirata K-i, Yasui H, Sakurai H, Yoshida Y, et
al: Overexpression of endothelial nitric oxide synthase accelerates
atherosclerotic lesion formation in apoE-deficient mice. J Clin
Invest. 110:331–340. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ozyazgan S, Kutluata N, Afsar S, Ozdas SB
and Akkan AG: Effect of glucagon-like peptide-1(7–36) and exendin-4
on the vascular reactivity in streptozotocin/nicotinamide-induced
diabetic rats. Pharmacology. 74:119–126. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nathanson D, Erdogdu O, Pernow J, Zhang Q
and Nystrom T: Endothelial dysfunction induced by triglycerides is
not restored by exenatide in rat conduit arteries ex vivo. Regul
Pept. 157:8–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Green BD, Hand KV, Dougan JE, McDonnell
BM, Cassidy RS and Grieve DJ: GLP-1 and related peptides cause
concentration-dependent relaxation of rat aorta through a pathway
involving KATP and cAMP. Arch Biochem Biophys. 478:136–142. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kuhlencordt PJ, Gyurko R, Han F,
Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH and Huang PL:
Accelerated atherosclerosis, aortic aneurysm formation, and
ischemic heart disease in apolipoprotein E/endothelial nitric oxide
synthase double-knockout mice. Circulation. 104:448–454. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ding L and Zhang J: Glucagon-like
peptide-1 activates endothelial nitric oxide synthase in human
umbilical vein endothelial cells. Acta Pharmacol Sin. 33:75–81.
2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Michell BJ, Griffiths JE and Mitchelhill
KI: The Akt kinase signals directly to endothelial nitric oxide.
Current Biology. 9:845–848. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Matsumoto S, Shimabukuro M, Fukuda D,
Soeki T, Yamakawa K, Masuzaki H and Sata M: Azilsartan, an
angiotensin II type 1 receptor blocker, restores endothelial
function by reducing vascular inflammation and by increasing the
phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide
synthase in diabetic mice. Cardiovascular Diabetology. 13:1–10.
2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Du YH, Guan YY, Alp NJ, Channon KM and
Chen AF: Endothelium-Specific GTP Cyclohydrolase I Overexpression
Attenuates Blood Pressure Progression in Salt-Sensitive Low-Renin
Hypertension. Circulation. 117:1045–1054. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hattori Y, Hattori S, Wang X, Satoh H,
Nakanishi N and Kasai K: Oral administration of tetrahydrobiopterin
slows the progression of atherosclerosis in apolipoprotein
E-knockout mice. Arterioscler Thromb Vasc Biol. 27:865–870. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Bendall JK, Alp NJ, Warrick N, Cai S,
Adlam D, Rockett K, Yokoyama M, Kawashima S and Channon KM:
Stoichiometric relationships between endothelial
tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and
eNOS coupling in vivo: Insights from transgenic mice with
endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression.
Circ Res. 97:864–871. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Takaya T, Hirata K, Yamashita T, Shinohara
M, Sasaki N, Inoue N, Yada T, Goto M, Fukatsu A, Hayashi T, et al:
A specific role for eNOS-derived reactive oxygen species in
atherosclerosis progression. Arterioscler Thromb Vasc Biol.
27:1632–1637. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lorber D: GLP-1 receptor agonists: Effects
on cardiovascular risk reduction. Cardiovasc Ther. 31:238–249.
2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Okerson T and Chilton RJ: The
cardiovascular effects of GLP-1 receptor agonists. Cardiovasc Ther.
30:e146–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Monji A, Mitsui T, Bando YK, Aoyama M,
Shigeta T and Murohara T: Glucagon-like peptide-1 receptor
activation reverses cardiac remodeling via normalizing cardiac
steatosis and oxidative stress in type 2 diabetes. Am J Physiol
Heart Circ Physiol. 305:H295–H304. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Arakawa M, Mita T, Azuma K, Ebato C, Goto
H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R and Watada H:
Inhibition of monocyte adhesion to endothelial cells and
attenuation of atherosclerotic lesion by a glucagon-like peptide-1
receptor agonist, exendin-4. Diabetes. 59:1030–1037. 2010.
View Article : Google Scholar : PubMed/NCBI
|