1
|
Bikbova G, Oshitari T, Tawada A and
Yamamoto S: Corneal changes in diabetes mellitus. Curr Diabetes
Rev. 8:294–302. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bril V: Neuromuscular complications of
diabetes mellitus. Continuum (Minneap Minn) 20 (3 Neurology of
Systemic Disease). 1–544. 2014.
|
3
|
Nentwich MM and Ulbig MW: Diabetic
retinopathy-ocular complications of diabetes mellitus. World J
Diabetes. 6:489–499. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kaul K, Tarr JM, Ahmad SI, Kohner EM and
Chibber R: Introduction to diabetes mellitus. Adv Exp Med Biol.
771:1–11. 2012.PubMed/NCBI
|
5
|
Brinks R and Rathmann W: Response to
Monesi etal Prevalence, incidence and mortality of diagnosed
diabetes: Evidence from an Italian population-based study. Diabet
Med. 29:1085–1086; author reply 1085. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Farag YM and Gaballa MR: Diabesity: An
overview of a rising epidemic. Nephrol Dial Transplant. 26:28–35.
2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chao CT, Huang JW, Chiang CK, Chen YC,
Fang CC, Hu FC, Chang CC and Yen CJ: Diabetes mellitus, superoxide
dismutase and peroxisome proliferator activated receptor gamma
polymorphisms modify the outcome of end-stage renal disease
patients of Han Chinese origin. Nephrology (Carlton). 23:117–125.
2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tagawa A, Yasuda M, Kume S, Yamahara K,
Nakazawa J, Chin-Kanasaki M, Araki H, Araki S, Koya D, Asanuma K,
et al: Impaired podocyte autophagy exacerbates proteinuria in
diabetic nephropathy. Diabetes. 65:755–767. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yasuda-Yamahara M, Kume S, Tagawa A,
Maegawa H and Uzu T: Emerging role of podocyte autophagy in the
progression of diabetic nephropathy. Autophagy. 11:2385–2386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kamiyama M, Urushihara M, Morikawa T,
Konishi Y, Imanishi M, Nishiyama A and Kobori H: Oxidative
stress/angiotensinogen/renin-angiotensin system axis in patients
with diabetic nephropathy. Int J Mol Sci. 14:23045–23062. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Weening JJ and Rennke HG: Glomerular
permeability and polyanion in adriamycin nephrosis in the rat.
Kidney Int. 24:152–159. 1983. View Article : Google Scholar : PubMed/NCBI
|
12
|
Amann K, Nichols C, Tornig J, Schwarz U,
Zeier M, Mall G and Ritz E: Effect of ramipril, nifedipine, and
moxonidine on glomerular morphology and podocyte structure in
experimental renal failure. Nephrol Dial Transplant. 11:1003–1011.
1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mifsud SA, Allen TJ, Bertram JF, Hulthen
UL, Kelly DJ, Cooper ME, Wilkinson-Berka JL and Gilbert RE:
Podocyte foot process broadening in experimental diabetic
nephropathy: Amelioration with renin-angiotensin blockade.
Diabetologia. 44:878–882. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim D, Lim S, Park M, Choi J, Kim J, Han
H, Yoon K, Kim K, Lim J and Park S: Ubiquitination-dependent CARM1
degradation facilitates Notch1-mediated podocyte apoptosis in
diabetic nephropathy. Cell Signal. 26:1774–1782. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Courboulin A, Tremblay VL, Barrier M,
Meloche J, Jacob MH, Chapolard M, Bisserier M, Paulin R, Lambert C,
Provencher S and Bonnet S: Krüppel-like Factor 5 contributes to
pulmonary artery smooth muscle proliferation and resistance to
apoptosis in human pulmonary arterial hypertension. Respir Res.
12:1282011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tetreault MP, Yang Y and Katz JP:
Krüppel-like factors in cancer. Nat Rev Cancer. 13:701–713. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Courboulin A, Tremblay VL, Barrier M,
Meloche J, Jacob MH, Chapolard M, Bisserier M, Paulin R, Lambert C,
Provencher S and Bonnet S: Krüppel-like factor 5 contributes to
pulmonary artery smooth muscle proliferation and resistance to
apoptosis in human pulmonary arterial hypertension. Respir Res.
12:1282011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Limame R, Op de Beeck K, Lardon F, De
Wever O and Pauwels P: Krüppel-like factors in cancer progression:
Three fingers on the steering wheel. Oncotarget. 5:29–48. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yin KJ, Hamblin M, Fan Y, Zhang J and Chen
YE: Krüppel-like factors in the central nervous system: Novel
mediators in stroke. Metab Brain Dis. 30:401–410. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen C, Zhou Z, Guo P and Dong JT:
Proteasomal degradation of the KLF5 transcription factor through a
ubiquitin-independent pathway. FEBS Lett. 581:1124–1130. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Dong JT and Chen C: Essential role of KLF5
transcription factor in cell proliferation and differentiation and
its implications for human diseases. Cell Mol Life Sci.
66:2691–2706. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Agardh E, Lundstig A, Perfilyev A, Volkov
P, Freiburghaus T, Lindholm E, Rönn T, Agardh CD and Ling C:
Genome-wide analysis of DNA methylation in subjects with type 1
diabetes identifies epigenetic modifications associated with
proliferative diabetic retinopathy. BMC Med. 13:1822015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kakimoto T, Okada K, Fujitaka K, Nishio M,
Kato T, Fukunari A and Utsumi H: Quantitative analysis of markers
of podocyte injury in the rat puromycin aminonucleoside nephropathy
model. Exp Toxicol Pathol. 67:171–177. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Trachtman H, Del Pizzo R, Futterweit S,
Levine D, Rao PS, Valderrama E and Sturman JA: Taurine attenuates
renal disease in chronic puromycin aminonucleoside nephropathy. Am
J Physiol. 262:F117–F123. 1992.PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Baĭramov RB and Abdullaeva RT: The impact
of early gastric cancer diagnosis on indices of survival in
patients after radical surgical intervention. Klin Khir. 1–21.
2013.
|
27
|
Krolewski AS, Skupien J, Rossing P and
Warram JH: Fast renal decline to end-stage renal disease: An
unrecognized feature of nephropathy in diabetes. Kidney Int.
91:1300–1311. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kowluru RA and Mishra M: Oxidative stress,
mitochondrial damage and diabetic retinopathy. Biochim Biophys
Acta. 1852:2474–2483. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Aoki Y, Yazaki K, Shirotori K, Yanagisawa
Y, Oguchi H, Kiyosawa K and Furuta S: Stiffening of connective
tissue in elderly diabetic patients: Relevance to diabetic
nephropathy and oxidative stress. Diabetologia. 36:79–83. 1993.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yasuno K, Kamiie J and Shirota K: Analysis
of ultrastructural glomerular basement membrane lesions and
podocytes associated with proteinuria and sclerosis in
Osborne-Mendel rats with progressive glomerulonephropathy. J Vet
Sci. 14:223–226. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yu H, Kistler A, Faridi MH, Meyer JO,
Tryniszewska B, Mehta D, Yue L, Dryer S and Reiser J: Synaptopodin
limits TRPC6 podocyte surface expression and attenuates
proteinuria. J Am Soc Nephrol. 27:3308–3319. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kriz W and Lemley KV: Potential relevance
of shear stress for slit diaphragm and podocyte function. Kidney
Int. 91:1283–1286. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cara-Fuentes G, Clapp WL, Johnson RJ and
Garin EH: Pathogenesis of proteinuria in idiopathic minimal change
disease: Molecular mechanisms. Pediatr Nephrol. 31:2179–2189. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Li X, Zhang X, Li X, Ding F and Ding J:
The role of survivin in podocyte injury induced by puromycin
aminonucleoside. Int J Mol Sci. 15:6657–6673. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu SY and Qi R: Role of bad in podocyte
apoptosis induced by puromycin aminonucleoside. Transplant Proc.
45:569–573. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zennaro C, Rastaldi MP, Pascolo L, Stebel
M, Trevisan E, Artero M, Tiribelli C, Di Maso V and Carraro M:
Podocyte expression of membrane transporters involved in puromycin
aminonucleoside-mediated injury. PLoS One. 8:e661592013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Marrero-Rodríguez D, Taniguchi-Ponciano K,
Jimenez-Vega F, Romero-Morelos P, Mendoza-Rodríguez M, Mantilla A,
Rodriguez-Esquivel M, Hernandez D, Hernandez A, Gomez-Gutierrez G,
et al: Krüppel-like factor 5 as potential molecular marker in
cervical cancer and the KLF family profile expression. Tumour Biol.
35:11399–11407. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sousa MI, Rodrigues AS, Pereira S,
Perestrelo T, Correia M and Ramalho-Santos J: Mitochondrial
mechanisms of metabolic reprogramming in proliferating cells. Curr
Med Chem. 22:2493–2504. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ci X, Xing C, Zhang B, Zhang Z, Ni JJ,
Zhou W and Dong JT: KLF5 inhibits angiogenesis in PTEN-deficient
prostate cancer by attenuating AKT activation and subsequent HIF1α
accumulation. Mol Cancer. 14:912015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Amirak E, Zakkar M, Evans PC and Kemp PR:
Perfusion of veins at arterial pressure increases the expression of
KLF5 and cell cycle genes in smooth muscle cells. Biochem Biophys
Res Commun. 391:818–823. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xiao H, Shi W, Liu S, Wang W, Zhang B,
Zhang Y, Xu L, Liang X and Liang Y: 1,25-Dihydroxyvitamin D(3)
prevents puromycin aminonucleoside-induced apoptosis of glomerular
podocytes by activating the phosphatidylinositol
3-kinase/Akt-signaling pathway. Am J Nephrol. 30:34–43. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Qin WW, Zhang R, Chen RA, Li GH, Ji YR,
Liu L and Wang T: MicroRNA-145 induces cell cycle arrest in G1
phase by directly targeting KLF5 in colon cancer. Int J Clin Exp
Pathol. 9:5197–5209. 2016.
|
43
|
Gaestel M: MAPK-activated protein kinases
(MKs): Novel insights and challenges. Front Cell Dev Biol.
3:882016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hettenhausen C, Schuman MC and Wu J: MAPK
signaling: A key element in plant defense response to insects.
Insect Sci. 22:157–164. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
O'Callaghan C, Fanning LJ and Barry OP:
p38δ MAPK: Emerging roles of a neglected isoform. Int J Cell Biol.
2014:2726892014.PubMed/NCBI
|
46
|
Zhang Q, Wang J, Duan MT, Han SP, Zeng XY
and Wang JY: NF-κB, ERK, p38 MAPK and JNK contribute to the
initiation and/or maintenance of mechanical allodynia induced by
tumor necrosis factor-alpha in the red nucleus. Brain Res Bull.
99:132–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cuadrado A and Nebreda AR: Mechanisms and
functions of p38 MAPK signalling. Biochem J. 429:403–417. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu R, Zheng HQ, Zhou Z, Dong JT and Chen
C: KLF5 promotes breast cell survival partially through fibroblast
growth factor-binding protein 1-pERK-mediated dual specificity
MKP-1 protein phosphorylation and stabilization. J Biol Chem.
284:16791–16798. 2009. View Article : Google Scholar : PubMed/NCBI
|