1
|
Nelitz M and Reichel H: Nonsurgical
treatment of developmental dysplasia of the hip. Orthopade.
37:550552–555. 2008.(In German). View Article : Google Scholar : PubMed/NCBI
|
2
|
Yamamoto N: Changes of the acetabular
cartilage following experimental subluxation of the hip joint in
rabbits. Nihon Seikeigeka Gakkai zasshi. 57:1741–1753. 1983.(In
Japanese). PubMed/NCBI
|
3
|
Ibrahim S: Acetabular dysplasia after
treatment for developmental dysplasia of the hip. J Bone Joint Surg
Br. 87:10252005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim HT, Kim JI and Yoo CI: Acetabular
development after closed reduction of developmental dislocation of
the hip. J Pediatr Orthop. 20:701–708. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ma R, Ji S, Zhou Y, Liu W and Zhang L:
Evolutionary regularity of acetabular dysplasia after reduction of
developmental dislocation of the hip. Chin Med J (Engl).
110:346–348. 1997.PubMed/NCBI
|
6
|
Nishii T, Sugano N, Sato Y, Tanaka H, Miki
H and Yoshikawa H: Three-dimensional distribution of acetabular
cartilage thickness in patients with hip dysplasia: A fully
automated computational analysis of MR imaging. Osteoarthritis
Cartilage. 12:650–657. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nishii T, Shiomi T, Tanaka H, Yamazaki Y,
Murase K and Sugano N: Loaded cartilage T2 mapping in patients with
hip dysplasia. Radiology. 256:955–965. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sijbrandij S: Dislocation of the hip in
young rats produced experimentally by prolonged extension. J Bone
Joint Surg Br. 47:792–795. 1965. View Article : Google Scholar : PubMed/NCBI
|
9
|
Greenhill BJ, Hainau B, Ellis RD and
el-Sayed RM: Acetabular changes in an experimental model of
developmental dysplasia of the hip (DDH). J Pediatr Orthop.
15:789–793. 1995. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bo N, Peng W, Xinghong P and Ma R: Early
cartilage degeneration in a rat experimental model of developmental
dysplasia of the hip. Connect Tissue Res. 53:513–520. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Casali PG and Blay JY;
ESMO/CONTICANET/EUROBONET Consensus Panel of Expert, :
Gastrointestinal stromal tumours: ESMO clinical practice guidelines
for diagnosis, treatment and follow-up. Ann Oncol. 21 Suppl
5:v98–v102. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ning B, Sun J, Yuan Y, Yao J, Wang P and
Ma R: Early articular cartilage degeneration in a developmental
dislocation of the hip model results from activation of β-catenin.
Int J Clin Exp Pathol. 7:1369–1378. 2014.PubMed/NCBI
|
13
|
da Silva MA, Yamada N, Clarke NM and Roach
HI: Cellular and epigenetic features of a young healthy and a young
osteoarthritic cartilage compared with aged control and OA
cartilage. J Orthop Res. 27:593–601. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kremli MK, Alshahid AH, Khoshhal KI and
Zamzam MM: The pattern of developmental dysplasia of the hip. Saudi
Med J. 24:1118–1120. 2003.PubMed/NCBI
|
15
|
Manning WK and Bonner WM Jr: Isolation and
culture of chondrocytes from human adult articular cartilage.
Arthritis Rheum. 10:235–239. 1967. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Raab P, Lohr J and Krauspe R: Remodeling
of the acetabulum after experimental hip joint dislocation-an
animal experiment study of the rabbit. Z Orthop Ihre Grenzgeb.
136:519–524. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ning B, Yuan Y, Yao J, Zhang S and Sun J:
Analyses of outcomes of one-stage operation for treatment of
late-diagnosed developmental dislocation of the hip: 864 hips
followed for 3.2 to 8.9 years. BMC Musculoskelet Disord.
15:4012014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tsuji Y, Takeshita H, Kusuzaki K, Hirasawa
Y, Ueda K and Ashihara T: Cell proliferation and differentiation of
cultured chondrocytes isolated from growth plate cartilage of rat
rib. Nihon Geka Hokan. 64:50–63. 1995.PubMed/NCBI
|
20
|
Hunter CJ, Imler SM, Malaviya P, Nerem RM
and Levenston ME: Mechanical compression alters gene expression and
extracellular matrix synthesis by chondrocytes cultured in collagen
I gels. Biomaterials. 23:1249–1259. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Garcia M and Knight MM: Cyclic loading
opens hemichannels to release ATP as part of a chondrocyte
mechanotransduction pathway. J Orthop Res. 28:510–515.
2010.PubMed/NCBI
|
22
|
Bougault C, Paumier A, Aubert-Foucher E
and Mallein-Gerin F: Molecular analysis of chondrocytes cultured in
agarose in response to dynamic compression. BMC Biotechnol.
8:712008. View Article : Google Scholar : PubMed/NCBI
|
23
|
De Croos JN, Dhaliwal SS, Grynpas MD,
Pilliar RM and Kandel RA: Cyclic compressive mechanical stimulation
induces sequential catabolic and anabolic gene changes in
chondrocytes resulting in increased extracellular matrix
accumulation. Matrix Biology. 25:323–331. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Villanueva I, Gladem SK, Kessler J and
Bryant SJ: Dynamic loading stimulates chondrocyte biosynthesis when
encapsulated in charged hydrogels prepared from poly (ethylene
glycol) and chondroitin sulfate. Matrix Biol. 29:51–62. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Ando K, Imai S, Isoya E, Kubo M, Mimura T,
Shioji S, Ueyama H and Matsusue Y: Effect of dynamic compressive
loading and its combination with a growth factor on the
chondrocytic phenotype of 3-dimensional scaffold-embedded
chondrocytes. Acta Orthop. 80:724–733. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Abusara Z, Seerattan R, Leumann A,
Thompson R and Herzog W: A novel method for determining articular
cartilage chondrocyte mechanics in vivo. J Biomech. 44:930–934.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rolauffs B, Williams JM, Aurich M,
Grodzinsky AJ, Kuettner KE and Cole AA: Proliferative remodeling of
the spatial organization of human superficial chondrocytes distant
from focal early osteoarthritis. Arthritis Rheum. 62:489–498.
2010.PubMed/NCBI
|
28
|
Shields KJ, Beckman MJ, Bowlin GL and
Wayne JS: Mechanical properties and cellular proliferation of
electrospun collagen type II. Tissue Eng. 10:1510–1517. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sivan SS, Wachtel E and Roughley P:
Structure, function, aging and turnover of aggrecan in the
intervertebral disc. Biochim Biophys Acta. 1840:3181–3189. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kiani C, Chen L, Wu YJ, Yee AJ and Yang
BB: Structure and function of aggrecan. Cell Res. 12:19–32. 2002.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Nagase H and Kashiwagi M: Aggrecanases and
cartilage matrix degradation. Arthritis Res Ther. 5:94–103. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
van Meurs JB, van Lent PL, Holthuysen AE,
Singer II, Bayne EK and van den Berg WB: Kinetics of aggrecanase-
and metalloproteinase-induced neoepitopes in various stages of
cartilage destruction in murine arthritis. Arthritis Rheum.
42:1128–1139. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
van Lent PL, Grevers LC, Blom AB, Arntz
OJ, van de Loo FA, Van der Kraan P, Abdollahi-Roodsaz S, Srikrishna
G, Freeze H, Sloetjes A, et al: Stimulation of chondrocyte-mediated
cartilage destruction by S100A8 in experimental murine arthritis.
Arthritis Rheum. 58:3776–3787. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Narmoneva DA, Cheung HS, Wang JY, Howell
DS and Setton LA: Altered swelling behavior of femoral cartilage
following joint immobilization in a canine model. J Orthop Res.
20:83–91. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hagiwara Y, Ando A, Chimoto E, Saijo Y,
Ohmori-Matsuda K and Itoi E: Changes of articular cartilage after
immobilization in a rat knee contracture model. J Orthop Res.
27:236–242. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tchetina EV, Squires G and Poole AR:
Increased type II collagen degradation and very early focal
cartilage degeneration is associated with upregulation of
chondrocyte differentiation related genes in early human articular
cartilage lesions. J Rheumatol. 32:876–886. 2005.PubMed/NCBI
|
37
|
Haapala J, Arokoski JP, Hyttinen MM, Lammi
M, Tammi M, Kovanen V, Helminen HJ and Kiviranta I: Remobilization
does not fully restore immobilization induced articular cartilage
atrophy. Clin Orthop Relat Res. 1–229. 1999.PubMed/NCBI
|
38
|
Borzi RM, Olivotto E, Pagani S, Vitellozzi
R, Neri S, Battistelli M, Falcieri E, Facchini A, Flamigni F, Penzo
M, et al: Matrix metalloproteinase 13 loss associated with impaired
extracellular matrix remodeling disrupts chondrocyte
differentiation by concerted effects on multiple regulatory
factors. Arthritis Rheum. 62:2370–2381. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Karsdal MA, Madsen SH, Christiansen C,
Henriksen K, Fosang AJ and Sondergaard BC: Cartilage degradation is
fully reversible in the presence of aggrecanase but not matrix
metalloproteinase activity. Arthritis Res Ther. 10:R632008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Breckon JJ, Hembry RM, Reynolds JJ and
Meikle MC: Regional and temporal changes in the synthesis of matrix
metalloproteinases and TIMP-1 during development of the rabbit
mandibular condyle. J Anat. 184:99–110. 1994.PubMed/NCBI
|
41
|
Selvamurugan N, Jefcoat SC, Kwok S,
Kowalewski R, Tamasi JA and Partridge NC: Overexpression of Runx2
directed by the matrix metalloproteinase-13 promoter containing the
AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. J Cell
Biochem. 99:545–557. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tetsunaga T, Nishida K, Furumatsu T,
Naruse K, Hirohata S, Yoshida A, Saito T and Ozaki T: Regulation of
mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2
transcriptional factor in SW1353 chondrocyte-like cells.
Osteoarthritis Cartilage. 19:222–232. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Aigner T, Stoss H, Weseloh G, Zeiler G and
von der Mark K: Activation of collagen type II expression in
osteoarthritic and rheumatoid cartilage. Virchows Arch B Cell
Pathol Incl Mol Pathol. 62:337–345. 1992. View Article : Google Scholar : PubMed/NCBI
|
44
|
Aigner T, Bertling W, Stöss H, Weseloh G
and von der Mark K: Independent expression of fibril-forming
collagens I, II, and III in chondrocytes of human osteoarthritic
cartilage. J Clin Invest. 91:829–837. 1993. View Article : Google Scholar : PubMed/NCBI
|
45
|
Aigner T, Vornehm SI, Zeiler G, Dudhia J,
von der Mark K and Bayliss MT: Suppression of cartilage matrix gene
expression in upper zone chondrocytes of osteoarthritic cartilage.
Arthritis Rheum. 40:562–569. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hotta H, Yamada H, Takaishi H, Abe T,
Morioka H, Kikuchi T, Fujikawa K and Toyama Y: Type II collagen
synthesis in the articular cartilage of a rabbit model of
osteoarthritis: Expression of type II collagen C-propeptide and
mRNA especially during early-stage osteoarthritis. J Orthop Sci.
10:595–607. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Park K, Min BH, Han DK and Hasty K:
Quantitative analysis of temporal and spatial variations of
chondrocyte behavior in engineered cartilage during long-term
culture. Ann Biomed Eng. 35:419–428. 2007. View Article : Google Scholar : PubMed/NCBI
|