1
|
Xue R, Gui D, Zheng L, Zhai R, Wang F and
Wang N: Mechanistic insight and management of diabetic nephropathy:
Recent progress and future perspective. J Diabetes Res.
2017:18398092017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhu P, Xie L, Ding HS, Gong Q, Yang J and
Yang L: High mobility group box 1 and kidney diseases (Review). Int
J Mol Med. 31:763–768. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim J, Sohn E, Kim CS, Jo K and Kim JS:
The role of high-mobility group box-1 protein in the development of
diabetic nephropathy. Am J Nephrol. 33:524–529. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Scaffidi P, Misteli T and Bianchi ME:
Release of chromatin protein HMGB1 by necrotic cells triggers
inflammation. Nature. 418:191–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xie J, Méndez JD, Méndez-Valenzuela V and
Aguilar-Hernández MM: Cellular signalling of the receptor for
advanced glycation end products (RAGE). Cell Signal. 25:2185–2197.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kawanami D, Matoba K, Takeda Y, Nagai Y,
Akamine T, Yokota T, Sango K and Utsunomiya K: SGLT2 inhibitors as
a therapeutic option for diabetic nephropathy. Int J Mol Sci.
18(pii): E10832017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Komala MG, Panchapakesan U, Pollock C and
Mather A: Sodium glucose cotransporter 2 and the diabetic kidney.
Curr Opin Nephrol Hypertens. 22:113–119. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Moses RG, Colagiuri S and Pollock C: SGLT2
inhibitors: New medicines for addressing unmet needs in type 2
diabetes. Australas Med J. 7:405–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Panchapakesan U, Pegg K, Gross S, Komala
MG, Mudaliar H, Forbes J, Pollock C and Mather A: Effects of SGLT2
inhibition in human kidney proximal tubular cells-renoprotection in
diabetic nephropathy? PLoS One. 8:e544422013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Gallagher H and Suckling RJ: Diabetic
nephropathy: Where are we on the journey from pathophysiology to
treatment? Diabetes Obes Metab. 18:641–647. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Penfold SA, Coughlan MT, Patel SK,
Srivastava PM, Sourris KC, Steer D, Webster DE, Thomas MC, MacIsaac
RJ, Jerums G, et al: Circulating high-molecular-weight RAGE ligands
activate pathways implicated in the development of diabetic
nephropathy. Kidney Int. 78:287–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Karin M and Ben-Neriah Y: Phosphorylation
meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev
Immunol. 18:621–663. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yan SD, Schmidt AM, Anderson GM, Zhang J,
Brett J, Zou YS, Pinsky D and Stern D: Enhanced cellular oxidant
stress by the interaction of advanced glycation end products with
their receptors/binding proteins. J Biol Chem. 269:9889–9897.
1994.PubMed/NCBI
|
15
|
Morcos M, Sayed AA, Bierhaus A, Yard B,
Waldherr R, Merz W, Kloeting I, Schleicher E, Mentz S, Abd el Baki
RF, et al: Activation of tubular epithelial cells in diabetic
nephropathy. Diabetes. 51:3532–3544. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zoungas S, Chalmers J, Neal B, Billot L,
Li Q, Hirakawa Y, Arima H, Monaghan H, Joshi R, Colagiuri S, et al:
Follow-up of blood-pressure lowering and glucose control in type 2
diabetes. N Engl J Med. 371:1392–1406. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lytvyn Y, Škrtić M, Yang GK, Yip PM,
Perkins BA and Cherney DZ: Glycosuria-mediated urinary uric acid
excretion in patients with uncomplicated type 1 diabetes mellitus.
Am J Physiol Renal Physiol. 308:F77–F83. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hovind P, Rossing P, Johnson RJ and
Parving HH: Serum uric acid as a new player in the development of
diabetic nephropathy. J Ren Nutr. 21:124–127. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Satirapoj B, Supasyndh O, Chaiprasert A,
Ruangkanchanasetr P, Kanjanakul I, Phulsuksombuti D, Utainam D and
Choovichian P: Relationship between serum uric acid levels with
chronic kidney disease in a Southeast Asian population. Nephrology
(Carlton). 15:253–258. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Heerspink HJ, Johnsson E, Gause-Nilsson I,
Cain VA and Sjöström CD: Dapagliflozin reduces albuminuria in
patients with diabetes and hypertension receiving renin-angiotensin
blockers. Diabetes Obes Metab. 18:590–597. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Inoguchi T and Nawata H: NAD(P)H oxidase
activation: A potential target mechanism for diabetic vascular
complications, progressive beta-cell dysfunction and metabolic
syndrome. Curr Drug Targets. 6:495–501. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Noronha IL, Niemir Z, Stein H and Waldherr
R: Cytokines and growth factors in renal disease. Nephrol Dial
Transplant. 10:775–786. 1995.PubMed/NCBI
|
23
|
Navarro-González JF and Mora-Fernández C:
The role of inflammatory cytokines in diabetic nephropathy. J Am
Soc Nephrol. 19:433–442. 2008. View Article : Google Scholar : PubMed/NCBI
|