1
|
Garg N, van den Bosch F and Deodhar A: The
concept of spondyloarthritis: Where are we now? Best Pract Res Clin
Rheumatol. 28:663–672. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Park R, Kim TH and Ji JD: Gene expression
profile in patients with axial spondyloarthritis: Meta-analysis of
publicly accessible microarray datasets. J Rheum Dis. 23:363–372.
2016. View Article : Google Scholar
|
3
|
Guo YY, Yang LL, Cui HD, Zhao S and Zhang
N: Coexisting ankylosing spondylitis and rheumatoid arthritis: A
case report with literature review. Chin Med J (Engl).
124:3430–3432. 2011.PubMed/NCBI
|
4
|
Bauer JW, Bilgic H and Baechler EC:
Gene-expression profiling in rheumatic disease: Tools and
therapeutic potential. Nat Rev Rheumatol. 5:257–265. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Häupl T, Stuhlmüller B, Grützkau A,
Radbruch A and Burmester GR: Does gene expression analysis inform
us in rheumatoid arthritis? Ann Rheum Dis. 69:37–42. 2010.
View Article : Google Scholar
|
6
|
Duan R, Leo P, Bradbury L, Brown MA and
Thomas G: Gene expression profiling reveals a downregulation in
immune-associated genes in patients with AS. Ann Rheum Dis.
69:17242010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sharma SM, Choi D, Planck SR, Harrington
CA, Austin CR, Lewis JA, Diebel TN, Martin TM, Smith JR and
Rosenbaum JT: Insights in to the pathogenesis of axial
spondyloarthropathy based on gene expression profiles. Arthritis
Res Ther. 11:R1682009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Assassi S, Reveille JD, Arnett FC, Weisman
MH, Ward MM, Agarwal SK, Gourh P, Bhula J, Sharif R, Sampat K, et
al: Whole-blood gene expression profiling in ankylosing spondylitis
shows upregulation of toll-like receptor 4 and 5. J Rheumatol.
38:87–98. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li Y and Agarwal P: A pathway-based view
of human diseases and disease relationships. PLoS One. 4:e43462009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ulitsky I, Krishnamurthy A, Karp RM and
Shamir R: DEGAS: De novo discovery of dysregulated pathways in
human diseases. PLoS One. 5:e133672010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li X, Chai W, Zhang G, Ni M, Chen J, Dong
J, Zhou Y, Hao L, Bai Y and Wang Y: Down-regulation of
lncRNA-AK001085 and its influences on the diagnosis of ankylosing
spondylitis. Med Sci Monit. 23:11–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sui W, Li H, He H, Xue W, Zhao X and Dai
Y: Microarray analysis of long non-coding RNA expression in
ankylosing spondylitis. https://doi.org/10.15761/IMM.1000172simple10.15761/IMM.1000172
|
13
|
Lin S, Li T, Zhu D, Ma C, Wang Y, He L,
Zhu C and Xing Q: The association between GAD1 gene polymorphisms
and cerebral palsy in Chinese infants. Tsitol Genet. 47:22–27.
2013.PubMed/NCBI
|
14
|
Thomas GP, Ran D, Pettit AR, Helen W,
Simranpreet K, Malcolm S and Brown MA: Expression profiling in
spondyloarthropathy synovial biopsies highlights changes in
expression of inflammatory genes in conjunction with tissue
remodelling genes. BMC Musculoskel Disord. 14:3542013. View Article : Google Scholar
|
15
|
Pimentelsantos FM, Ligeiro D, Matos M,
Mourão AF, Costa J, Santos H, Barcelos A, Godinho F, Pinto P, Cruz
M, et al: Whole blood transcriptional profiling in ankylosing
spondylitis identifies novel candidate genes that might contribute
to the inflammatory and tissue-destructive disease aspects.
Arthritis Res Ther. 13:R572011. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: Affy-analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42(Database Issue): D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hsu SD, Lin FM, Wu WY, Liang C, Huang WC,
Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, et al: Mirtarbase: A
database curates experimentally validated microrna-target
interactions. Nucleic Acids Res. 39(Database Issue): D163–D169.
2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X and Li
T: Mirecords: An integrated resource for microrna-target
interactions. Nucleic Acids Res. 37(Database Issue): D105–D110.
2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vergoulis T, Vlachos IS, Alexiou P,
Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N,
Dalamagas T and Hatzigeorgiou AG: TarBase 6.0: Capturing the
exponential growth of miRNA targets with experimental support.
Nucleic Acids Res. 40(Database Issue): D222–D229. 2011.PubMed/NCBI
|
21
|
Jiang Q, Wang Y, Hao Y, Juan L, Teng M,
Zhang X, Li M, Wang G and Liu Y: miR2Disease: A manually curated
database for microRNA deregulation in human disease. Nucleic Acids
Res. 37(Database Issue): D98–D104. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shi X, Xu Y, Zhang C, Feng L, Sun Z, Han
J, Su F, Zhang Y, Li C and Li X: Subpathway-LNCE: Identify
dysfunctional subpathways competitively regulated by lncRNAs
through integrating lncRNA-mRNA expression profile and pathway
topologies. Oncotarget. 7:69857–69870. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nahler G: Pearson correlation coefficient.
Dictionary of Pharmaceutical Medicine. 1322010.
|
24
|
Best DJ and Roberts DE: Algorithm AS 89:
The upper tail probabilities of Spearman's Rho. J Royal Stat Soc
Series C (Appl Stat). 24:377–379. 1975.
|
25
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J Royal Stat Soc Series B (Methodological).
57:289–300. 1995.
|
26
|
Li C, Han J, Yao Q, Zou C, Xu Y, Zhang C,
Shang D, Zhou L, Zou C, Sun Z, et al: Subpathway-GM: Identification
of metabolic subpathways via joint power of interesting genes and
metabolites and their topologies within pathways. Nucleic Acids
Res. 41:e1012013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mar JC, Matigian NA, Quackenbush J and
Wells CA: Attract: A method for identifying core pathways that
define cellular phenotypes. PLoS One. 6:e254452011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu AL, Fan MP and Liu DQ: Dysfunctional
subpathways of osteoarthritis identified through combining
lncRNA-mRNA expression profile with pathway topologies. Int J Clin
Exp Med. 11:1260–1269. 2018.
|
29
|
Chen X, Dong H, Liu S, Yu L, Yan D, Yao X,
Sun W, Han D and Gao G: Long noncoding RNA MHENCR promotes melanoma
progression via regulating miR-425/489-mediated PI3K-Akt pathway.
Am J Transl Res. 9:90–102. 2017.PubMed/NCBI
|
30
|
Wang Y, He L, Du Y, Zhu P, Huang G, Luo J,
Yan X, Ye B, Li C, Xia P, et al: The long noncoding RNA lncTCF7
promotes self-renewal of human liver cancer stem cells through
activation of Wnt signaling. Cell Stem Cell. 16:413–425. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Freshney NW, Rawlinson L, Guesdon F, Jones
E, Cowley S, Hsuan J and Saklatvala J: Interleukin-1 activates a
novel protein kinase cascade that results in the phosphorylation of
hsp27. Cell. 78:1039–1049. 1994. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee MS and Kim YJ: Signaling pathways
downstream of pattern-recognition receptors and their cross talk.
Annu Rev Biochem. 76:447–480. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen Z, Cheng K, Walton Z, Wang Y, Ebi H,
Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, et al: A murine lung
cancer co-clinical trial identifies genetic modifiers of
therapeutic response. Nature. 483:613–617. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lories RJ, Luyten FP and de Vlam K:
Progress in spondylarthritis. Mechanisms of new bone formation in
spondyloarthritis. Arthritis Res Ther. 11:2212009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pedersen SJ, Chiowchanwisawakit P, Lambert
RG, Østergaard M and Maksymowych WP: Resolution of inflammation
following treatment of ankylosing spondylitis is associated with
new bone formation. J Rheumatol. 38:1349–1354. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lee EJ, Lee EJ, Chung YH, Song DH, Hong S,
Lee CK, Yoo B, Kim TH, Park YS, Kim SH, et al: High level of
interleukin-32 gamma in the joint of ankylosing spondylitis is
associated with osteoblast differentiation. Arthritis Res Ther.
17:3502015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ge C, Xiao G, Jiang D and Franceschi RT:
Critical role of the extracellular signal-regulated kinase-MAPK
pathway in osteoblast differentiation and skeletal development. J
Cell Biol. 176:709–718. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hu Y, Chan E, Wang SX and Li B: Activation
of p38 mitogen-activated protein kinase is required for osteoblast
differentiation. Endocrinology. 144:2068–2074. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Redlich K and Smolen JS: Inflammatory bone
loss: Pathogenesis and therapeutic intervention. Nat Rev Drug
Discov. 11:234–250. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang J, Zhao Q, Wang G, Yang C, Xu Y, Li Y
and Yang P: Circulating levels of Th1 and Th2 chemokines in
patients with ankylosing spondylitis. Cytokine. 81:10–14. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Tao K, Tang X, Wang B, Li RJ, Zhang BQ,
Lin JH and Li H: Distinct expression of chemokine-like factor 1 in
synovium of osteoarthritis, rheumatoid arthritis and ankylosing
spondylitis. J Huazhong Univ Sci Technology Med Sci. 36:70–76.
2016. View Article : Google Scholar
|
42
|
Duftner C, Dejaco C, Kullich W, Klauser A,
Goldberger C, Falkenbach A and Schirmer M: Preferential type 1
chemokine receptors and cytokine production of CD28- T cells in
ankylosing spondylitis. Ann Rheum Dis. 65:647–653. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yang PT, Kasai H, Zhao LJ, Xiao WG, Tanabe
F and Ito M: Increased CCR4 expression on circulating CD4(+) T
cells in ankylosing spondylitis, rheumatoid arthritis and systemic
lupus erythematosus. Clin Exp Immunol. 138:342–347. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Eilbracht J, Reichenzeller M, Hergt M,
Schnölzer M, Heid H, Stöhr M, Franke WW and Schmidt-Zachmann MS:
NO66, a highly conserved dual location protein in the nucleolus and
in a special type of synchronously replicating chromatin. Mol Biol
Cell. 15:1816–1832. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Nakashima K, Zhou X, Kunkel G, Zhang Z,
Deng JM, Behringer RR and de Crombrugghe B: The novel zinc
finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell. 108:17–29.
2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sinha KM, Yasuda H, Coombes MM, Dent SY
and De Crombrugghe B: Regulation of the osteoblast-specific
transcription factor Osterix by NO66, a Jumonji family histone
demethylase. EMBO J. 29:68–79. 2010. View Article : Google Scholar : PubMed/NCBI
|