1
|
Cleator S, Heller W and Coombes RC:
Triple-negative breast cancer: Therapeutic options. Lancet Oncol.
8:235–244. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View
Article : Google Scholar : PubMed/NCBI
|
3
|
O'Reilly EA, Gubbins L, Sharma S, Tully R,
Guang MH, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell
M and McCann A: The fate of chemoresistance in triple negative
breast cancer (TNBC). BBA Clin. 3:257–275. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tanaka K, Tokunaga E, Inoue Y, Yamashita
N, Saeki H, Okano S, Kitao H, Oki E, Oda Y and Maehara Y: Impact of
expression of vimentin and Axl in breast cancer. Clin Breast
Cancer. 16:520–526.e2. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Meyer AS, Miller MA, Gertler FB and
Lauffenburger DA: The receptor AXL diversifies EGFR signaling and
limits the response to EGFR-targeted inhibitors in triple-negative
breast cancer cells. Sci Signal. 6:ra662013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Simon R, Lam A, Li MC, Ngan M, Menenzes S
and Zhao Y: Analysis of gene expression data using BRB-ArrayTools.
Cancer Inform. 3:11–17. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Reinhold WC, Mergny JL, Liu H, Ryan M,
Pfister TD, Kinders R, Parchment R, Doroshow J, Weinstein JN and
Pommier Y: Exon array analyses across the NCI-60 reveal potential
regulation of TOP1 by transcription pausing at guanosine quartets
in the first intron. Cancer Res. 70:2191–2203. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pfister TD, Reinhold WC, Agama K, Gupta S,
Khin SA, Kinders RJ, Parchment RE, Tomaszewski JE, Doroshow JH and
Pommier Y: Topoisomerase I levels in the NCI-60 cancer cell line
panel determined by validated ELISA and microarray analysis and
correlation with indenoisoquinoline sensitivity. Mol Cancer Ther.
8:1878–1884. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kohn KW, Zeeberg BR, Reinhold WC, Sunshine
M, Luna A and Pommier Y: Gene expression profiles of the NCI-60
human tumor cell lines define molecular interaction networks
governing cell migration processes. PLoS One. 7:e357162012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cufí S, Vazquez-Martin A,
Oliveras-Ferraros C, Martin-Castillo B, Vellon L and Menendez JA:
Autophagy positively regulates the CD44(+) CD24(−/low) breast
cancer stem-like phenotype. Cell Cycle. 10:3871–3885. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu YN, Chang TH, Tsai MF, Wu SG, Tsai TH,
Chen HY, Yu SL, Yang JC and Shih JY: IL-8 confers resistance to
EGFR inhibitors by inducing stem cell properties in lung cancer.
Oncotarget. 6:10415–10431. 2015.PubMed/NCBI
|
12
|
Price JT, Tiganis T, Agarwal A, Djakiew D
and Thompson EW: Epidermal growth factor promotes MDA-MB-231 breast
cancer cell migration through a phosphatidylinositol 3′-kinase and
phospholipase C-dependent mechanism. Cancer Res. 59:5475–5478.
1999.PubMed/NCBI
|
13
|
Satelli A and Li S: Vimentin in cancer and
its potential as a molecular target for cancer therapy. Cell Mol
Life Sci. 68:3033–3046. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu YR, Jiang YZ, Xu XE, Yu KD, Jin X, Hu
X, Zuo WJ, Hao S, Wu J, Liu GY, et al: Comprehensive transcriptome
analysis identifies novel molecular subtypes and subtype-specific
RNAs of triple-negative breast cancer. Breast Cancer Res.
18:332016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang X, Qian H and Zhang S: Discovery of
significant pathways in breast cancer metastasis via module
extraction and comparison. IET Syst Biol. 8:47–55. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cortesio CL, Chan KT, Perrin BJ, Burton
NO, Zhang S, Zhang ZY and Huttenlocher A: Calpain 2 and PTP1B
function in a novel pathway with Src to regulate invadopodia
dynamics and breast cancer cell invasion. J Cell Biol. 180:957–971.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Miyake M, Hori S, Morizawa Y, Tatsumi Y,
Toritsuka M, Ohnishi S, Shimada K, Furuya H, Khadka VS, Deng Y, et
al: Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha
1 (COL13A1) produced in cancer cells promote tumor budding at the
invasion front in human urothelial carcinoma of the bladder.
Oncotarget. 8:36099–36114. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yi JS, Mun DG, Lee H, Park JS, Lee JW, Lee
JS, Kim SJ, Cho BR, Lee SW and Ko YG: PTRF/cavin-1 is essential for
multidrug resistance in cancer cells. J Proteome Res. 12:605–614.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhu X, Zhong J, Zhao Z, Sheng J, Wang J,
Liu J, Cui K, Chang J, Zhao H and Wong S: Epithelial derived CTGF
promotes breast tumor progression via inducing EMT and collagen I
fibers deposition. Oncotarget. 6:25320–25338. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu JL, Wei W, Tang W, Jiang Y, Yang HW,
Li JT and Zhou X: Silencing of lysyl oxidase gene expression by RNA
interference suppresses metastasis of breast cancer. Asian Pac J
Cancer Prev. 13:3507–3511. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang J, Wang Y, Li G, Yu H and Xie X:
Down-regulation of nicotinamide N-methyltransferase induces
apoptosis in human breast cancer cells via the
mitochondria-mediated pathway. PLoS One. 9:e892022014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Loi S, Pommey S, Haibe-Kains B, Beavis PA,
Darcy PK, Smyth MJ and Stagg J: CD73 promotes anthracycline
resistance and poor prognosis in triple negative breast cancer.
Proc Natl Acad Sci USA. 110:pp. 11091–11096. 2013; View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu X, Li Y, Wang J, Wen X, Marcus MT,
Daniels G, Zhang DY, Ye F, Wang LH, Du X, et al: Long chain fatty
Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone
resistance in human breast cancer. PLoS One. 8:e770602013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Clarke CJ, Hii LL, Bolden JE and Johnstone
RW: Inducible activation of IFI 16 results in suppression of
telomerase activity, growth suppression and induction of cellular
senescence. J Cell Biochem. 109:103–112. 2010.PubMed/NCBI
|
25
|
Tambe Y, Yamamoto A, Isono T, Chano T,
Fukuda M and Inoue H: The drs tumor suppressor is involved in the
maturation process of autophagy induced by low serum. Cancer Lett.
283:74–83. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu X, Li X, Fu Q, Cao Q, Chen X, Wang M,
Yu J, Long J, Yao J, Liu H, et al: AKR1B1 promotes basal-like
breast cancer progression by a positive feedback loop that
activates the EMT program. J Exp Med. 214:1065–1079. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Benatar T, Yang W, Amemiya Y, Evdokimova
V, Kahn H, Holloway C and Seth A: IGFBP7 reduces breast tumor
growth by induction of senescence and apoptosis pathways. Breast
Cancer Res Treat. 133:563–573. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang YW, Cheng HL, Ding YR, Chou LH and
Chow NH: EMP1, EMP 2, and EMP3 as novel therapeutic targets in
human cancer. Biochim Biophys Acta. 1868:199–211. 2017.PubMed/NCBI
|
29
|
Young MR and Colburn NH: Fra-1 a target
for cancer prevention or intervention. Gene. 379:1–11. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Bourguignon LY: CD44 mediated oncogenic
signaling and cytoskeleton activation during mammary tumor
progression. J Mammary Gland Neoplasia. 6:287–297. 2001. View Article : Google Scholar
|
31
|
Desmet CJ, Gallenne T, Prieur A, Reyal F,
Visser NL, Wittner BS, Smit MA, Geiger TR, Laoukili J, Iskit S, et
al: Identification of a pharmacologically tractable Fra-1/ADORA2B
axis promoting breast cancer metastasis. Proc Natl Acad Sci USA.
110:pp. 5139–5144. 2013; View Article : Google Scholar : PubMed/NCBI
|