1
|
Freiermuth D, Mets B, Bolliger D,
Reuthebuch O, Doebele T, Scholz M, Gregor M, Haschke M, Seeberger
MD and Fassl J: Sevoflurane and isoflurane-pharmacokinetics,
hemodynamic stability, and cardioprotective effects during
cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 30:1494–1501.
2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Likhvantsev VV, Landoni G, Levikov DI,
Grebenchikov OA, Skripkin YV and Cherpakov RA: Sevoflurane vs.
total intravenous anesthesia for isolated coronary artery bypass
surgery with cardiopulmonary bypass: A randomized trial. J
Cardiothorac Vasc Anesth. 30:1221–1227. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ružman T, Šimurina T, Gulam D, Ružman N
and Miškulin M: Sevoflurane preserves regional cerebral oxygen
saturation better than propofol: Randomized controlled trial. J
Clin Anesth. 36:110–117. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Walia H, Ruda J and Tobias JD: Sevoflurane
and bradycardia in infants with trisomy 21: A case report and
review of the literature. Int J Pediatr Otorhinolaryngol. 80:5–7.
2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Conreux F, Best O, Preckel MP, Lhopitault
C, Beydon L, Pouplard F and Granry JC: Effets
électroencéphalographiques du sévoflurane à l'induction chez le
jeune enfant: Étude prospective sur 20 cas. Ann Fr Anesth Réanim.
20:438–445. 2001.(In French). View Article : Google Scholar
|
6
|
Geng YJ, Wu QH and Zhang RQ: Effect of
propofol, sevoflurane, and isoflurane on postoperative cognitive
dysfunction following laparoscopic cholecystectomy in elderly
patients: A randomized controlled trial. J Clin Anesth. 38:165–171.
2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xiao H, Liu B, Chen Y and Zhang J:
Learning, memory and synaptic plasticity in hippocampus in rats
exposed to sevoflurane. Int J Dev Neurosci. 48:38–49. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu N, Wang M, Xie K, Wang H, Wang C, Wang
C, Wang C, Li Y, Yu Y and Wang G: Internalization of GluA2 and the
underlying mechanisms of cognitive decline in aged rats following
surgery and prolonged exposure to sevoflurane. Neurotoxicol.
49:94–103. 2015. View Article : Google Scholar
|
9
|
Shen X, Liu Y, Xu S, Zhao Q, Guo X, Shen R
and Wang F: Early life exposure to sevoflurane impairs adulthood
spatial memory in the rat. Neurotoxicol. 39:45–56. 2013. View Article : Google Scholar
|
10
|
Wu Y, Gu C and Huang X: Sevoflurane
protects against hepatic ischemia/reperfusion injury by modulating
microRNA-200c regulation in mice. Biomed Pharmacother.
84:1126–1136. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L
and Ji X: Identification of miRNAs involved in the protective
effect of sevoflurane preconditioning against hypoxic injury in
PC12 cells. Cell Mol Neurobiol. 35:1117–1125. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yi W, Li D, Guo Y, Zhang Y, Huang B and Li
X: Sevoflurane inhibits the migration and invasion of glioma cells
by upregulating microRNA-637. Int J Mol Med. 38:1857–1863. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ye J, Zhang Z, Wang Y, Chen C, Xu X, Yu H
and Peng M: Altered hippocampal microRNA expression profiles in
neonatal rats caused by sevoflurane anesthesia: MicroRNA profiling
and bioinformatics target analysis. Exp Ther Med. 12:1299–1310.
2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fujimoto S, Ishikawa M, Nagano M and
Sakamoto A: Influence of neonatal sevoflurane exposure on nerve
development-related microRNAs and behavior of rats. Biomed Res.
36:347–355. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Friedman R, Farh K, Burge C and Bartel D:
Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Winter J, Jung S, Keller S, Gregory R and
Diederichs S: Many roads to maturity: MicroRNA biogenesis pathways
and their regulation. Nat Cell Biol. 11:228–234. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Q, Li G, Li B, Chen Q, Lv D, Liu J,
Ma J, Sun N, Yang L, Fei X and Song Q: Sevoflurane represses the
self-renewal ability by regulating miR-7a,7b/Klf4 signalling
pathway in mouse embryonic stem cells. Cell Prolif. 49:609–617.
2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou C, Gu H, Fan R, Wang B and Lou J:
MicroRNA 302/367 cluster effectively facilitates direct
reprogramming from human fibroblasts into functional neurons. Stem
Cells Dev. 24:2746–2755. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Z, Hong Y, Xiang D, Zhu P, Wu E, Li
W, Mosenson J and Wu WS: MicroRNA-302/367 cluster governs hESC
self-renewal by dually regulating cell cycle and apoptosis
pathways. Stem Cell Reports. 4:645–657. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li HL, Wei JF, Fan LY, Wang SH, Zhu L, Li
TP, Lin G, Sun Y, Sun ZJ, Ding J, et al: miR-302 regulates
pluripotency, teratoma formation and differentiation in stem cells
via an AKT1/OCT4-dependent manner. Cell Death Dis. 7:e20782016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gao Z, Zhu X and Dou Y: The miR-302/367
cluster: A comprehensive update on its evolution and functions.
Open Biol. 5:1501382015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang CM, Chiba T, Brill B, Delis N, von
Manstein V, Vafaizadeh V, Oellerich T and Groner B: Expression of
the miR-302/367 cluster in glioblastoma cells suppresses
tumorigenic gene expression patterns and abolishes transformation
related phenotypes. Int J Cancer. 137:2296–2309. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maadi H, Moshtaghian A, Taha MF, Mowla SJ,
Kazeroonian A, Haass NK and Javeri A: Multimodal tumor suppression
by miR-302 cluster in melanoma and colon cancer. Int J Biochem Cell
Biol. 81:121–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Parchem RJ, Moore N, Fish JL, Parchem JG,
Braga TT, Shenoy A, Oldham MC, Rubenstein JL, Schneider RA and
Blelloch R: miR-302 is required for timing of neural
differentiation, neural tube closure, and embryonic viability. Cell
Rep. 12:760–773. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Suresh B, Kumar AM, Jeong HS, Cho YH,
Ramakrishna S and Kim KS: Regulation of Fanconi anemia protein
FANCD2 monoubiquitination by miR-302. Biochem Biophys Res Commun.
466:180–185. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang SL, Yang M, Herrlinger S, Liang C,
Lai F and Chen JF: MiR-302/367 regulate neural progenitor
proliferation, differentiation timing, and survival in neurulation.
Dev Biol. 408:140–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li HH, Lin SL, Huang CN, Lu FJ, Chiu PY,
Huang WN, Lai TJ and Lin CL: miR-302 attenuates
amyloid-beta-induced neurotoxicity through activation of Akt
signaling. J Alzheimers Dis. 50:1083–1098. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fang YC and Yeh CH: Inhibition of miR-302
suppresses hypoxia-reoxygenation-induced H9c2 cardiomyocyte death
by regulating Mcl-1 expression. Oxid Med Cell Longev.
2017:79689052017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ghasemi-Kasman M, Baharvand H and Javan M:
Enhanced neurogenesis in degenerated hippocampi following
pretreatment with miR-302/367 expressing lentiviral vector in mice.
Biomed Pharmacother. 96:1222–1229. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ghasemi-Kasman M, Shojaei A, Gol M,
Moghadamnia AA, Baharvand H and Javan M: miR-302/367-induced
neurons reduce behavioral impairment in an experimental model of
Alzheimer's disease. Mol Cell Neurosci. 86:50–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhou YF, Wang QX, Zhou HY and Chen G:
Autophagy activation prevents sevoflurane-induced neurotoxicity in
H4 human neuroglioma cells. Acta Pharmacol Sin. 37:580–588. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Altuntas TG, Zager RA and Kharasch ED:
Cytotoxicity of S-conjugates of the sevoflurane degradation product
fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (Compound
A) in a human proximal tubular cell line. Toxicol Appl Pharmacol.
193:55–65. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Manoharan S, Guillemin GJ, Abiramasundari
RS, Essa MM, Akbar M and Akbar MD: The role of reactive oxygen
species in the pathogenesis of Alzheimer's disease, Parkinson's
disease, and Huntington's disease: A mini review. Oxid Med Cell
Longev. 2016:85905782016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu KX, Edwards B, Lee S, Finelli MJ,
Davies B, Davies KE and Oliver PL: Neuron-specific antioxidant OXR1
extends survival of a mouse model of amyotrophic lateral sclerosis.
Brain. 138:1167–1181. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Oliver PL, Finelli MJ, Edwards B, Bitoun
E, Butts DL, Becker EB, Cheeseman MT, Davies B and Davies KE: Oxr1
is essential for protection against oxidative stress-induced
neurodegeneration. PLoS Genet. 7:e10023382011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Finelli MJ, Sanchez-Pulido L, Liu KX,
Davies KE and Oliver PL: The evolutionarily conserved
Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc)
domain is neuroprotective against oxidative stress. J Biol Chem.
291:2751–2763. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu Y, Davies KE and Oliver PL: The
antioxidant protein Oxr1 influences aspects of mitochondrial
morphology. Free Radic Biol Med. 95:255–267. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen X, Xu Y, Liao X, Liao R, Zhang L, Niu
K, Li T, Li D, Chen Z, Duan Y and Sun J: Plasma miRNAs in
predicting radiosensitivity in non-small cell lung cancer. Tumour
Biol. 37:11927–11936. 2016. View Article : Google Scholar : PubMed/NCBI
|