Characteristics of Nur77 and its ligands as potential anticancer compounds (Review)
- Authors:
- Lingjuan Wu
- Liqun Chen
-
Affiliations: College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China - Published online on: September 27, 2018 https://doi.org/10.3892/mmr.2018.9515
- Pages: 4793-4801
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P and Evans RM: The nuclear receptor superfamily: The second decade. Cell. 83:835–839. 1995. View Article : Google Scholar : PubMed/NCBI | |
Margolis RN and Christakos S: The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation. An update. Ann N Y Acad Sci. 1192:208–214. 2010. View Article : Google Scholar : PubMed/NCBI | |
Robinson-Rechavi M, Garcia Escriva H and Laudet V: The nuclear receptor superfamily. J Cell Sci. 116:585–586. 2003. View Article : Google Scholar : PubMed/NCBI | |
Giguere V: Structure and function of the nuclear receptor superfamily for steroid, thyroid hormone and retinoic acid. Genet Eng (N Y). 12:183–200. 1990. View Article : Google Scholar : PubMed/NCBI | |
Brelivet Y, Rochel N and Moras D: Structural analysis of nuclear receptors: From isolated domains to integral proteins. Mol Cell Endocrinol. 348:466–473. 2012. View Article : Google Scholar : PubMed/NCBI | |
McEwan IJ: The Nuclear receptor superfamily at thirty. Methods Mol Biol. 1443:3–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Germain P, Staels B, Dacquet C, Spedding M and Laudet V: Overview of nomenclature of nuclear receptors. Pharmacol Rev. 58:685–704. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rastinejad F, Huang P, Chandra V and Khorasanizadeh S: Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol. 51:T1–T21. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP and Rastinejad F: Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA. Nature. 456:350–356. 2008. View Article : Google Scholar : PubMed/NCBI | |
Olefsky JM: Nuclear receptor minireview series. J Biol Chem. 276:36863–36864. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen T: Nuclear receptor drug discovery. Curr Opin Chem Biol. 12:418–426. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen T: Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev. 62:1257–1264. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hazel TG, Nathans D and Lau LF: A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA. 85:8444–8448. 1988. View Article : Google Scholar : PubMed/NCBI | |
Watson MA and Milbrandt J: The NGFI-B gene, a transcriptionally inducible member of the steroid receptor gene superfamily: Genomic structure and expression in rat brain after seizure induction. Mol Cell Biol. 9:4213–4219. 1989. View Article : Google Scholar : PubMed/NCBI | |
Chang C, Kokontis J, Liao SS and Chang Y: Isolation and characterization of human TR3 receptor: A member of steroid receptor superfamily. J Steroid Biochem. 34:391–395. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hwang DS, Lee BY, Kim HS, Lee MC, Kyung DH, Om AS, Rhee JS and Lee JS: Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus. BMC Genomics. 15:9932014. View Article : Google Scholar : PubMed/NCBI | |
Sharma Y, Chilamakuri CS, Bakke M and Lenhard B: Computational characterization of modes of transcriptional regulation of nuclear receptor genes. PLoS One. 9:e888802014. View Article : Google Scholar : PubMed/NCBI | |
Kurakula K, Koenis DS, van Tiel CM and de Vries CJ: NR4A nuclear receptors are orphans but not lonesome. Biochim Biophys Acta. 1843:2543–2555. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rehman SU, Sarwar T, Husain MA, Ishqi HM and Tabish M: Identification of two novel isoforms of mouse NUR77 lacking N-terminal domains. IUBMB Life. 69:106–114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wilson TE, Fahrner TJ and Milbrandt J: The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol Cell Biol. 13:5794–5804. 1993. View Article : Google Scholar : PubMed/NCBI | |
Maira M, Martens C, Philips A and Drouin J: Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol. 19:7549–7557. 1999. View Article : Google Scholar : PubMed/NCBI | |
Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al: Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 81:687–693. 1995. View Article : Google Scholar : PubMed/NCBI | |
Perlmann T and Jansson L: A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 9:769–782. 1995. View Article : Google Scholar : PubMed/NCBI | |
Flaig R, Greschik H, Peluso-Iltis C and Moras D: Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain. J Biol Chem. 280:19250–19258. 2005. View Article : Google Scholar : PubMed/NCBI | |
Michiels P, Atkins K, Ludwig C, Whittaker S, van Dongen M and Günther U: Assignment of the orphan nuclear receptor Nurr1 by NMR. Biomol NMR Assign. 4:101–105. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wansa KD, Harris JM and Muscat GE: The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J Biol Chem. 277:33001–33011. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lanig H, Reisen F, Whitley D, Schneider G, Banting L and Clark T: In silico adoption of an orphan nuclear receptor NR4A1. PLoS One. 10:e01352462015. View Article : Google Scholar : PubMed/NCBI | |
Moore TW, Mayne CG and Katzenellenbogen JA: Minireview: Not picking pockets: Nuclear receptor alternate-site modulators (NRAMs). Mol Endocrinol. 24:683–695. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chang LF, Lin PC, Ho LI, Liu PY, Wu WC, Chiang IP, Chang HW, Lin SZ, Harn YC, Harn HJ and Chiou TW: Overexpression of the orphan receptor Nur77 and its translocation induced by PCH4 may inhibit malignant glioma cell growth and induce cell apoptosis. J Surg Oncol. 103:442–450. 2011. View Article : Google Scholar : PubMed/NCBI | |
Holmes WF, Soprano DR and Soprano KJ: Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: Activation of the p38 MAP kinase signal pathway. Oncogene. 22:6377–6386. 2003. View Article : Google Scholar : PubMed/NCBI | |
Niu G, Lu L, Gan J, Zhang D, Liu J and Huang G: Dual roles of orphan nuclear receptor TR3/Nur77/NGFI-B in mediating cell survival and apoptosis. Int Rev Cell Mol Biol. 313:219–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Drabsch Y, Dekker TJ, de Vinuesa AG, Li Y, Hawinkels LJ, Sheppard KA, Goumans MJ, Luwor RB, de Vries CJ, et al: Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nat Commun. 5:33882014. View Article : Google Scholar : PubMed/NCBI | |
Hedrick E and Safe S: Transforming growth factor β/NR4A1-inducible breast cancer cell migration and epithelial-to-mesenchymal transition is p38α (Mitogen-Activated Protein Kinase 14) dependent. Mol Cell Biol. 37:pii: e00306. –17. 2017. View Article : Google Scholar | |
Delgado E, Boisen MM, Laskey R, Chen R, Song C, Sallit J, Yochum ZA, Andersen CL, Sikora MJ, Wagner J, et al: High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome. Gynecol Oncol. 141:348–356. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yan G, Diao Z, Sun H and Hu Y: NUR77 inhibits the expression of TIMP2 and increases the migration and invasion of HTR-8/SVneo cells induced by CYR61. Placenta. 33:561–567. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC and Zhang XK: Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell. 116:527–540. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Liu W, Lin F, Li H, Kolluri SK, Lin B, Han YH, Dawson MI and Zhang XK: Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol Cell Biol. 24:9705–9725. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang XK: Targeting Nur77 translocation. Expert Opin Ther Targets. 11:69–79. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han YH, Cao X, Lin B, Lin F, Kolluri SK, Stebbins J, Reed JC, Dawson MI and Zhang XK: Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt. Oncogene. 25:2974–2986. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen HZ, Zhao BX, Zhao WX, Li L, Zhang B and Wu Q: Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria. Carcinogenesis. 29:2078–2088. 2008. View Article : Google Scholar : PubMed/NCBI | |
No H, Bang Y, Lim J, Kim SS, Choi HS and Choi HJ: Involvement of induction and mitochondrial targeting of orphan nuclear receptor Nur77 in 6-OHDA-induced SH-SY5Y cell death. Neurochem Int. 56:620–626. 2010. View Article : Google Scholar : PubMed/NCBI | |
Debernard Boldingh KA, Mathisen GH and Paulsen RE: Differences in NGFI-B, Nurr1, and NOR-1 expression and nucleocytoplasmic translocation in glutamate-treated neurons. Neurochem Int. 61:79–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Renaud J, Chiasson K, Bournival J, Rouillard C and Martinoli MG: 17β-estradiol delays 6-OHDA-induced apoptosis by acting on Nur77 translocation from the nucleus to the cytoplasm. Neurotox Res. 25:124–134. 2014. View Article : Google Scholar : PubMed/NCBI | |
Agostini-Dreyer A, Jetzt AE, Stires H and Cohick WS: Endogenous IGFBP-3 mediates intrinsic apoptosis through modulation of Nur77 phosphorylation and nuclear export. Endocrinology. 156:4141–4151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Chau T, Liu HX, Liao D, Keane R, Nie Y, Yang H and Wan YJ: Bile acids regulate nuclear receptor (Nur77) expression and intracellular location to control proliferation and apoptosis. Mol Cancer Res. 13:281–292. 2015. View Article : Google Scholar : PubMed/NCBI | |
Drouin J, Maira M and Philips A: Novel mechanism of action for Nur77 and antagonism by glucocorticoids: A convergent mechanism for CRH activation and glucocorticoid repression of POMC gene transcription. J Steroid Biochem Mol Biol. 65:59–63. 1998. View Article : Google Scholar : PubMed/NCBI | |
Maira M, Martens C, Batsché E, Gauthier Y and Drouin J: Dimer-specific potentiation of NGFI-B (Nur77) transcriptional activity by the protein kinase A pathway and AF-1-dependent coactivator recruitment. Mol Cell Biol. 23:763–776. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rambaud J, Desroches J, Balsalobre A and Drouin J: TIF1beta/KAP-1 is a coactivator of the orphan nuclear receptor NGFI-B/Nur77. J Biol Chem. 284:14147–14156. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee SO, Abdelrahim M, Yoon K, Chintharlapalli S, Papineni S, Kim K, Wang H and Safe S: Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growth. Cancer Res. 70:6824–6836. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hedrick E, Lee SO, Doddapaneni R, Singh M and Safe S: NR4A1 antagonists inhibit β1-integrin-dependent breast cancer cell migration. Mol Cell Biol. 36:1383–1394. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hedrick E, Li X and Safe S: Penfluridol represses integrin expression in breast cancer through induction of reactive oxygen species and downregulation of Sp transcription factors. Mol Cancer Ther. 16:205–216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lacey A, Rodrigues-Hoffman A and Safe S: PAX3-FOXO1A expression in rhabdomyosarcoma is driven by the targetable nuclear receptor NR4A1. Cancer Res. 77:732–741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chao LC, Zhang Z, Pei L, Saito T, Tontonoz P and Pilch PF: Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol Endocrinol. 21:2152–2163. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kanzleiter T, Preston E, Wilks D, Ho B, Benrick A, Reznick J, Heilbronn LK, Turner N and Cooney GJ: Overexpression of the orphan receptor Nur77 alters glucose metabolism in rat muscle cells and rat muscle in vivo. Diabetologia. 53:1174–1183. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ and Tontonoz P: NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med. 12:1048–1055. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pols TW, Ottenhoff R, Vos M, Levels JH, Quax PH, Meijers JC, Pannekoek H, Groen AK and de Vries CJ: Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity. Biochem Biophys Res Commun. 366:910–916. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Bruemmer D: NR4A orphan nuclear receptors: Transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol. 30:1535–1541. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Liu Y and Zheng D: Alpha 1-antichymotrypsin/SerpinA3 is a novel target of orphan nuclear receptor Nur77. FEBS J. 275:1025–1038. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lee BH, Indran IR, Tan HM, Li Y, Zhang Z, Li J and Yong EL: A dietary medium-chain fatty acid, decanoic acid, inhibits recruitment of Nur77 to the HSD3B2 promoter in vitro and reverses endocrine and metabolic abnormalities in a rat model of polycystic ovary syndrome. Endocrinology. 157:382–394. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kolluri SK, Zhu X, Zhou X, Lin B, Chen Y, Sun K, Tian X, Town J, Cao X, Lin F, et al: A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell. 14:285–298. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang GH, Duan YH, Dai Y, Bao Y, Hu M, Zhou YQ, Li M, Jiang F, Zhou H, et al: Modulation of the Nur77-Bcl-2 apoptotic pathway by p38alpha MAPK. Oncotarget. 8:69731–69745. 2017.PubMed/NCBI | |
Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, Liu B, Lin SC and Wu Q: p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J. 25:5703–5715. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li GD, Fang JX, Chen HZ, Luo J, Zheng ZH, Shen YM and Wu Q: Negative regulation of transcription coactivator p300 by orphan receptor TR3. Nucleic Acids Res. 35:7348–7359. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lei NZ, Zhang XY, Chen HZ, Wang Y, Zhan YY, Zheng ZH, Shen YM and Wu Q: A feedback regulatory loop between methyltransferase PRMT1 and orphan receptor TR3. Nucleic Acids Res. 37:832–848. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhan YY, Chen Y, Zhang Q, Zhuang JJ, Tian M, Chen HZ, Zhang LR, Zhang HK, He JP, Wang WJ, et al: The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat Chem Biol. 8:897–904. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang RH, He JP, Su ML, Luo J, Xu M, Du XD, Chen HZ, Wang WJ, Wang Y, Zhang N, et al: The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling. EMBO Mol Med. 5:137–148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liu Y, Chen HZ, Li FW, Wu JF, Zhang HK, He JP, Xing YZ, Chen Y, Wang WJ, et al: Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol. 11:339–346. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang WJ, Wang Y, Hou PP, Li FW, Zhou B, Chen HZ, Bian XL, Cai QX, Xing YZ, He JP, et al: Induction of autophagic death in cancer cells by agonizing TR3 and attenuating Akt2 activity. Chem Biol. 22:1040–1051. 2015. View Article : Google Scholar : PubMed/NCBI | |
To SK, Zeng JZ and Wong AS: Nur77: A potential therapeutic target in cancer. Expert Opin Ther Targets. 16:573–585. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Ye X, Liao D, Huang S, Mao H, Zhao D and Zeng H: Orphan nuclear receptor TR3/Nur77 is a specific therapeutic target for hepatic cancers. J Clin Exp Oncol. 6:pii: 184. 2017. View Article : Google Scholar | |
Brady SF, Wagenaar MM, Singh MP, Janso JE and Clardy J: The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett. 2:4043–4046. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhan Y, Du X, Chen H, Liu J, Zhao B, Huang D, Li G, Xu Q, Zhang M, Weimer BC, et al: Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol. 4:548–556. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu JJ, Zeng HN, Zhang LR, Zhan YY, Chen Y, Wang Y, Wang J, Xiang SH, Liu WJ, Wang WJ, et al: A unique pharmacophore for activation of the nuclear orphan receptor Nur77 in vivo and in vitro. Cancer Res. 70:3628–3637. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yao LM, He JP, Chen HZ, Wang Y, Wang WJ, Wu R, Yu CD and Wu Q: Orphan receptor TR3 participates in cisplatin-induced apoptosis via Chk2 phosphorylation to repress intestinal tumorigenesis. Carcinogenesis. 33:301–311. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duan YH, Dai Y, Wang GH, Zhang X, Chen HF, Chen JB, Yao XS and Zhang XK: Bioactive xanthones from the stems of Cratoxylum formosum ssp. pruniflorum. J Nat Prod. 73:1283–1287. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang WJ, Wang Y, Chen HZ, Xing YZ, Li FW, Zhang Q, Zhou B, Zhang HK, Zhang J, Bian XL, et al: Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol. 10:133–140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zeng Q, Jia YW, Xu PL, Xiao MW, Liu YM, Peng SL and Liao X: Quick and selective extraction of Z-ligustilide from Angelica sinensis using magnetic multiwalled carbon nanotubes. J Sep Sci. 38:4269–4275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kan WL, Cho CH, Rudd JA and Lin G: Study of the anti-proliferative effects and synergy of phthalides from Angelica sinensis on colon cancer cells. J Ethnopharmacol. 120:36–43. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Jiang Z, Wang C, Yang Y, Li L, He H and Yu Z: Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages. Oncotarget. 8:29300–29317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abedin MJ, Wang D, McDonnell MA, Lehmann U and Kelekar A: Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 14:500–510. 2007. View Article : Google Scholar : PubMed/NCBI | |
Greenhill C: Celastrol identified as a leptin sensitizer and potential novel treatment for obesity. Nat Rev Endocrinol. 11:4442015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Lee J, Hernandez Salazar MA, Mazitschek R and Ozcan U: Treatment of obesity with celastrol. Cell. 161:999–1011. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, et al: Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell. 66:141–153, e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Andey T, Patel A, Jackson T, Safe S and Singh M: 1,1-Bis (3′-indolyl)-1-(p-substitutedphenyl)methane compounds inhibit lung cancer cell and tumor growth in a metastasis model. Eur J Pharm Sci. 500:227–241. 2013. View Article : Google Scholar | |
Yoon K, Lee SO, Cho SD, Kim K, Khan S and Safe S: Activation of nuclear TR3 (NR4A1) by a diindolylmethane analog induces apoptosis and proapoptotic genes in pancreatic cancer cells and tumors. Carcinogenesis. 32:836–842. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cho SD, Yoon K, Chintharlapalli S, Abdelrahim M, Lei P, Hamilton S, Khan S, Ramaiah SK and Safe S: Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor-dependent and nuclear receptor-independent pathways. Cancer Res. 67:674–683. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee SO, Li X, Hedrick E, Jin UH, Tjalkens RB, Backos DS, Li L, Zhang Y, Wu Q and Safe S: Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells. Mol Endocrinol. 28:1729–1739. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cho SD, Lee SO, Chintharlapalli S, Abdelrahim M, Khan S, Yoon K, Kamat AM and Safe S: Activation of nerve growth factor-induced B alpha by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth. Mol Pharmacol. 77:396–404. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hedrick E, Lee SO and Safe S: The nuclear orphan receptor NR4A1 regulates β1-integrin expression in pancreatic and colon cancer cells and can be targeted by NR4A1 antagonists. Mol Carcinog. 56:2066–2075. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hedrick E, Lee SO, Doddapaneni R, Singh M and Safe S: Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocr Relat Cancer. 22:831–840. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lacey A, Hedrick E, Li X, Patel K, Doddapaneni R, Singh M and Safe S: Nuclear receptor 4A1 (NR4A1) as a drug target for treating rhabdomyosarcoma (RMS). Oncotarget. 7:31257–31269. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hedrick E, Lee SO, Kim G, Abdelrahim M, Jin UH, Safe S and Abudayyeh A: Nuclear receptor 4A1 (NR4A1) as a drug target for renal cell adenocarcinoma. PLoS One. 10:e01283082015. View Article : Google Scholar : PubMed/NCBI | |
Wang JR, Gan WJ, Li XM, Zhao YY, Li Y, Lu XX, Li JM and Wu H: Orphan nuclear receptor Nur77 promotes colorectal cancer invasion and metastasis by regulating MMP-9 and E-cadherin. Carcinogenesis. 35:2474–2484. 2014. View Article : Google Scholar : PubMed/NCBI | |
To SK, Zeng WJ, Zeng JZ and Wong AS: Hypoxia triggers a Nur77-β-catenin feed-forward loop to promote the invasive growth of colon cancer cells. Br J Cancer. 110:935–945. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Liu J, Jia R and Song H: Nur77 inhibits androgen-induced bladder cancer growth. Cancer Invest. 31:654–660. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wohlkoenig C, Leithner K, Olschewski A, Olschewski H and Hrzenjak A: TR3 is involved in hypoxia-induced apoptosis resistance in lung cancer cells downstream of HIF-1α. Lung Cancer. 111:15–22. 2017. View Article : Google Scholar : PubMed/NCBI |