1
|
Sun C, Reimers LL and Burk RD: Methylation
of HPV16 genome CpG sites is associated with cervix precancer and
cancer. Gynecol Oncol. 121:59–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hu SY, Zheng RS, Zhao FH, Zhang SW, Chen
WQ and Qiao YL: Trend analysis of cervical cancer incidence and
mortality rates in Chinese women during 1989–1989. Zhongguo Yi Xue
Ke Xue Yuan Xue Bao. 36:119–25. 2014.(In Chinese). PubMed/NCBI
|
3
|
Jiang P, Liu J, Li W, Zeng X and Tang J:
Role of p53 and p21 polymorphisms in the risk of cervical cancer
among Chinese women. Acta Biochim Biophys Sin (Shanghai).
42:671–676. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang B, Chen J, Ren Z, Chen Y, Li J, Miao
X, Song Y, Zhao T, Li Y, Shi Y, et al: A specific miRNA signature
promotes radioresistance of human cervical cancer cells. Cancer
Cell Int. 13:1182013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Thompson RF and Maity A: Radiotherapy and
the tumor microenvironment: Mutual influence and clinical
implications. Adv Exp Med Biol. 772:147–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shinohara ET and Maity A: Increasing
sensitivity to radiotherapy and chemotherapy by using novel
biological agents that alter the tumor microenvironment. Curr Mol
Med. 9:1034–1045. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fu ZC, Wang FM and Cai JM: Gene expression
changes in residual advanced cervical cancer after radiotherapy:
Indicators of poor prognosis and radioresistance? Med Sci Monit.
21:1276–1287. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dubrovska A, Elliott J, Salamone RJ,
Telegeev GD, Stakhovsky AE, Schepotin IB, Yan F, Wang Y, Bouchez
LC, Kularatne SA, et al: CXCR4 expression in prostate cancer
progenitor cells. PLoS One. 7:e312262012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fuchs K, Hippe A, Schmaus A, Homey B,
Sleeman JP and Orian-Rousseau V: Opposing effects of high- and
low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling
depend on CD44. Cell Death Dis. 4:e8192013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Goffart N, Lombard A, Lallemand F, Kroonen
J, Nassen J, Di Valentin E, Berendsen S, Dedobbeleer M, Willems E,
Robe P, et al: CXCL12 mediates glioblastoma resistance to
radiotherapy in the subventricular zone. Neuro Oncol. 19:66–77.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang D, Jiao C, Zhu Y, Liang D, Zao M,
Meng X, Gao J, He Y, Liu W, Hou J, et al: Activation of
CXCL12/CXCR4 renders colorectal cancer cells less sensitive to
radiotherapy via up-regulating the expression of survivin. Exp Biol
Med (Maywood). 242:429–435. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Davis S, Lollo B, Freier S and Esau C:
Improved targeting of miRNA with antisense oligonucleotides.
Nucleic Acids Res. 34:2294–2304. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Barker HE, Paget JT, Khan AA and
Harrington KJ: The tumour microenvironment after radiotherapy:
Mechanisms of resistance and recurrence. Nat Rev Cancer.
15:409–425. 2015. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Zips D, Eicheler W, Brüchner K, Jackisch
T, Geyer P, Petersen C, van der Kogel AJ and Baumann M: Impact of
the tumour bed effect on microenvironment, radiobiological hypoxia
and the outcome of fractionated radiotherapy of human FaDu
squamous-cell carcinoma growing in the nude mouse. Int J Radiat
Biol. 77:1185–1193. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Egeblad M and Werb Z: New functions for
the matrix metalloproteinases in cancer progression. Nat Rev
Cancer. 2:161–174. 2002. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Tachibana K, Hirota S, Iizasa H, Yoshida
H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N,
Nishikawa S, et al: The chemokine receptor CXCR4 is essential for
vascularization of the gastrointestinal tract. Nature. 393:591–594.
1998. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dorsam RT and Gutkind JS:
G-protein-coupled receptors and cancer. Nat Rev Cancer. 7:79–94.
2007. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Takakura N, Watanabe T, Suenobu S, Yamada
Y, Noda T, Ito Y, Satake M and Suda T: A role for hematopoietic
stem cells in promoting angiogenesis. Cell. 102:199–209. 2000.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Park HJ, Griffin RJ, Hui S, Levitt SH and
Song CW: Radiation-induced vascular damage in tumors: Implications
of vascular damage in ablative hypofractionated radiotherapy (SBRT
and SRS). Radiat Res. 177:311–327. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Boimel PJ, Smirnova T, Zhou ZN, Wyckoff J,
Park H, Coniglio SJ, Qian BZ, Stanley ER, Cox D, Pollard JW, et al:
Contribution of CXCL12 secretion to invasion of breast cancer
cells. Breast Cancer Res. 14:R232012. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Burns JM, Summers BC, Wang Y, Melikian A,
Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ,
et al: A novel chemokine receptor for SDF-1 and I-TAC involved in
cell survival, cell adhesion, and tumor development. J Exp Med.
203:2201–2213. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Burger JA and Kipps TJ: CXCR4: A key
receptor in the crosstalk between tumor cells and their
microenvironment. Blood. 107:1761–1767. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang XH, Jin X, Malladi S, Zou Y, Wen YH,
Brogi E, Smid M, Foekens JA and Massagué J: Selection of bone
metastasis seeds by mesenchymal signals in the primary tumor
stroma. Cell. 154:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Barbero S, Bonavia R, Bajetto A, Porcile
C, Pirani P, Ravetti JL, Zona GL, Spaziante R, Florio T and
Schettini G: Stromal cell-derived factor 1alpha stimulates human
glioblastoma cell growth through the activation of both
extracellular signal-regulated kinases 1/2 and Akt. Cancer Res.
63:1969–1974. 2003.PubMed/NCBI
|
28
|
Avigdor A, Goichberg P, Shivtiel S, Dar A,
Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, et al:
CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of
human CD34+ stem/progenitor cells to bone marrow. Blood.
103:2981–2989. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang Y, Zhang J, Cui ZM, Zhao J and Zheng
Y: Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical
intraepithelial neoplasia and cervical cancer. Chin J Cancer.
32:289–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Faber A, Goessler UR, Hoermann K, Schultz
JD, Umbreit C and Stern-Straeter J: SDF-1-CXCR4 axis: Cell
trafficking in the cancer stem cell niche of head and neck squamous
cell carcinoma. Oncol Rep. 29:2325–2331. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View
Article : Google Scholar : PubMed/NCBI
|