1
|
Duncan RL and Turner CH:
Mechanotransduction and the functional response of bone to
mechanical strain. Calcif Tissue Int. 57:344–358. 1995. View Article : Google Scholar : PubMed/NCBI
|
2
|
Qi MC, Zou SJ, Han LC, Zhou HX and Hu J:
Expression of bone-related genes in bone marrow MSCs after cyclic
mechanical strain: Implications for distraction osteogenesis. Int J
Oral Sci. 1:143–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maul TM, Chew DW, Nieponice A and Vorp DA:
Mechanical stimuli differentially control stem cell behavior:
Morphology, proliferation, and differentiation. Biomech Model
Mechanobiol. 10:939–953. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ilancheran S, Moodley Y and Manuelpillai
U: Human fetal membranes: A source of stem cells for tissue
regeneration and repair? Placenta. 30:2–10. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Miki T, Mitamura K, Ross MA, Stolz DB and
Strom SC: Identification of stem cell marker-positive cells by
immunofluorescence in term human amnion. J Reprod Immunol.
75:91–96. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Toda A, Okabe M, Yoshida T and Nikaido T:
The potential of amniotic membrane/amnion-derived cells for
regeneration of various tissues. J Pharmacol Sci. 105:215–228.
2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hodge A, Lourensz D, Vaghjiani V, Nguyen
H, Tchongue J, Wang B, Murthi P, Sievert W and Manuelpillai U:
Soluble factors derived from human amniotic epithelial cells
suppress collagen production in human hepatic stellate cells.
Cytotherapy. 16:1132–1144. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Niknejad H, Peirovi H, Ahmadiani A,
Ghanavi J and Jorjani M: Differentiation factors that influence
neuronal markers expression in vitro from human amniotic epithelial
cells. Eur Cells Mater. 19:22–29. 2010. View Article : Google Scholar
|
9
|
Kakishita K, Elwan MA, Nakao N, Itakura T
and Sakuragawa N: Human amniotic epithelial cells produce dopamine
and survive after implantation into the striatum of a rat model of
Parkinson's disease: A potential source of donor for
transplantation therapy. Exp Neurol. 165:27–34. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wlodarski K, Moskalewski S, Skarzyńska S,
Póltorak A and Ostrowski K: Irradiation and the bone induction
properties of epithelial cells. Bull Acad Pol Sci Biol. 19:821–825.
1971.PubMed/NCBI
|
11
|
Wang Q, Wu W, Han X, Zheng A, Lei S, Wu J,
Chen H, He C, Luo F and Liu X: Osteogenic differentiation of
amniotic epithelial cells: Synergism of pulsed electromagnetic
field and biochemical stimuli. BMC Musculoskelet Disord.
15:2712014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Parolini O, Alviano F, Bagnara GP, Bilic
G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M,
Mao N, et al: Concise review: Isolation and characterization of
cells from human term placenta: Outcome of the first international
workshop on placenta derived stem cells. Stem Cells. 26:300–311.
2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Miki T, Marongiu F, Dorko K, Ellis EC and
Strom SC: Isolation of amniotic epithelial stem cells. Curr Protoc
Stem Cell Biol Chapter. 1:Unit 1E.3. 2010. View Article : Google Scholar
|
14
|
Hata M, Naruse K, Ozawa S, Kobayashi Y,
Nakamura N, Kojima N, Omi M, Katanosaka Y, Nishikawa T, Naruse K,
et al: Mechanical stretch increases the proliferation while
inhibiting the osteogenic differentiation in dental pulp stem
cells. Tissue Eng Part A. 19:625–633. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang YQ, Li XT, Rabie AB, Fu MK and Zhang
D: Human periodontal ligament cells express osteoblastic phenotypes
under intermittent force loading in vitro. Front Biosci. 1:776–781.
2006. View Article : Google Scholar
|
16
|
Koike M, Shimokawa H, Kanno Z, Ohya K and
Soma K: Effects of mechanical strain on proliferation and
differentiation of bone marrow stromal cell line ST2. J Bone Miner
Metab. 23:219–225. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Heo JS, Lee SY and Lee JC: Wnt/β-catenin
signaling enhances osteoblastogenic differentiation from human
periodontal ligament fibroblasts. Mol Cells. 30:449–454. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim IS, Song YM and Hwang SJ: Osteogenic
responses of human mesenchymal stromal cells to static stretch. J
Dent Res. 89:1129–1134. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu C, Zhang JW, Hu L, Song YC, Zhou L,
Fan Y, Zhu HY, Wang Y and Li QP: Activation of the AT1R/HIF-1α/ACE
axis mediates angiotensin II-induced VEGF synthesis in mesenchymal
stem cells. Biomed Res Int. 2014:6273802014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gao J, Fu S, Zeng Z, Li F, Niu Q, Jing D
and Feng X: Cyclic stretch promotes osteogenesis-related gene
expression in osteoblast-like cells through a cofilin-associated
mechanism. Mol Med Rep. 14:218–224. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu Y, Zhang P, Dai Q, Yang X, Fu R, Jiang
L and Fang B: Effect of mechanical stretch on the proliferation and
differentiation of BMSCs from ovariectomized rats. Mol Cell
Biochem. 382:273–282. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dao DY, Jonason JH, Zhang Y, Hsu W, Chen
D, Hilton MJ and O'Keefe RJ: Cartilage-specific β-CATENIN signaling
regulates chondrocyte maturation, generation of ossification
centers, and perichondrial bone formation during skeletal
development. J Bone Miner Res. 27:1680–1694. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jian H, Shen X, Liu I, Semenov M, He X and
Wang XF: Smad3-dependent nuclear translocation of beta-catenin is
required for TGFbeta1-induced proliferation of bone marrow-derived
adult human mesenchymal stem cells. Genes Dev. 20:666–674. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kestler HA and Kühl M: From individual Wnt
pathways towards a Wnt signaling network. Philos Trans R Soc Lond B
Biol Sci. 363:1333–1347. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Taurin S, Sandbo N, Qin Y, Browning D and
Dulin NO: Phosphorylation of beta-catenin by cyclic AMP-dependent
protein kinase. J Biol Chem. 281:9971–996. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Takemaru KI and Moon RT: The
transcriptional eoaetivator CBP interaets with beta-catenin to
activate gene expression. J Cell Biol. 149:249–254. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Komori T, Yagi H, Nomura S, Yamaguchi A,
Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al:
Targeted disruption of Cbfa1 results in a complete lack of bone
formation owing to maturational arrest of osteoblasts. Cell.
89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xiao G, Jiang D, Ge C, Zhao Z, Lai Y,
Boules H, Phimphilai M, Yang X, Karsenty G and Franceschi RT:
Cooperative interactions between activating transcription factor 4
and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene
expression. J Biol Chem. 280:30689–30696. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mundlos S, Otto F, Mundlos C, Mulliken JB,
Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, et
al: Mutations involving the transcription factor CBFA1 cause
cleidocranial dysplasia. Cell. 89:773–779. 1997. View Article : Google Scholar : PubMed/NCBI
|