Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (Review)
- Authors:
- Xiang‑Hua Yu
- Xiao‑Hua Ren
- Xin‑Hua Liang
- Ya‑Ling Tang
-
Affiliations: Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China, Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China, Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China - Published online on: October 23, 2018 https://doi.org/10.3892/mmr.2018.9577
- Pages: 5307-5316
This article is mentioned in:
Abstract
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Konerding MA, Fait E and Gaumann A: 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer. 84:1354–1362. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mcintyre A and Harris AL: Metabolic and hypoxic adaptation to anti-angiogenic therapy: A target for induced essentiality. EMBO Mol Med. 7:368–379. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zaytseva YY, Elliott VA, Rychahou P, Mustain WC, Kim JT, Valentino J, Gao T, O'Connor KL, Neltner JM, Lee EY, et al: Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis. 35:1341–1351. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Dong L, Wei D, Wang X, Zhang S and Hua L: Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 10:171–180. 2014. View Article : Google Scholar : PubMed/NCBI | |
Browne CD, Hindmarsh EJ and Smith JW: Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J. 20:2027–2035. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Jin G, Mi R, Zhang J, Zhang J, Xu H, Cheng S, Zhang Y, Song W and Liu F: Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma. J Cancer Res Clin Oncol. 142:2447–2459. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, Chudzinski-Tavassi AM, Coletta RD and Graner E: The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br J Cancer. 107:977–987. 2012. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 29 6 Suppl 16:S15–S18. 2002. View Article : Google Scholar | |
Cantelmo AR, Brajic A and Carmeliet P: Endothelial metabolism driving angiogenesis: Emerging concepts and principles. Cancer J. 21:244–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, et al: Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 520:192–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Elmasri H, Ghelfi E, Yu C, Traphagen S, Cernadas M, Cao H, Shi GP, Plutzky J, Sahin M, Hotamisligil G and Cataltepe S: Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: Role of stem cell factor/c-kit pathway. Angiogenesis. 15:457–468. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ku CY, Liu YH, Lin HY, Lu SC and Lin JY: Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma. Oncotarget. 7:18229–18246. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kazlauskas A: Lysophosphatidic acid contributes to angiogenic homeostasis. Exp Cell Res. 333:166–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
Talmadge JE and Fidler IJ: AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li L and Li W: Epithelial-mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 150:33–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, et al: Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 541:412017. View Article : Google Scholar : PubMed/NCBI | |
Nath A, Li I, Roberts LR and Chan C: Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 5:147522015. View Article : Google Scholar : PubMed/NCBI | |
Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Prijic S, Urban BC, Tisza MJ, Zuo Y, Li L, Tan Z, Chen X, Mani SA and Chang JT: Candidate anti-metastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res. 76:2037–2049. 2016. View Article : Google Scholar : PubMed/NCBI | |
Polyak K and Weinberg RA: Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Wang H, Li J, Fang X, Pan H, Yuan X and Zhang P: Up-regulated FASN expression promotes transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int J Mol Sci. 15:11539–11554. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, Deberardinis RJ and Boothman DA: Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene. 34:3908–3916. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O'Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY and Evers BM: Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 72:1504–1517. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hung CM, Kuo DH, Chou CH, Su YC, Ho CT and Way TD: Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J Agric Food Chem. 59:9683–9690. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gonzalezguerrico AM, Espinoza I, Schroeder B, Park CH, Kvp CM, Khurana A, Corominas-Faja B, Cuyàs E, Alarcón T, Kleer C, et al: Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer. Oncotarget. 7:71151–71168. 2016.PubMed/NCBI | |
Ruan HY, Yang C, Tao XM, He J, Wang T, Wang H, Wang C, Jin GZ, Jin HJ and Qin WX: Downregulation of ACSM3 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Am J Cancer Res. 7:543–553. 2017.PubMed/NCBI | |
Sun L, Kong Y, Cao M, Zhou H, Li H, Cui Y, Fang F, Zhang W, Li J, Zhu X, et al: Decreased expression of acetyl-CoA synthase 2 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Cancer Sci. 108:1338–1346. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hanai JI, Doro N, Seth P and Sukhatme VP: ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis. 4:e6962013. View Article : Google Scholar : PubMed/NCBI | |
Hanai J, Doro N, Sasaki AT, Kobayashi S, Cantley LC, Seth P and Sukhatme VP: Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol. 227:1709–1720. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Huang J, Xin W, Chen L, Zhao X, Lv Z, Liu Y and Wan Q: Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy. Metabolism. 63:716–726. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, Kok SH, Cheng SJ, Lee JJ, Wu TS, et al: HMGCS2 enhances invasion and metastasis via direct interaction with PPARα to activate Src signaling in colorectal cancer and oral cancer. Oncotarget. 8:22460–22476. 2017.PubMed/NCBI | |
Koichiro K, Shogo S, Chiaki K, Yuki K, Ke Y and Hiroshi F: High expression of fatty acid-binding protein 5 promotes cell growth and metastatic potential of colorectal cancer cells. FEBS Open Bio. 6:190–199. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, et al: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 17:1498–1503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, et al: Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis. 30:589–597. 2009. View Article : Google Scholar : PubMed/NCBI | |
Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 16:488–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sciacovelli M and Frezza C: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284:3132–3144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
Adams JM and Cory S: Bcl-2-regulated apoptosis: Mechanism and therapeutic potential. Curr Opin Immunol. 19:488–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nishi K, Suzuki K, Sawamoto J, Tokizawa Y, Iwase Y, Yumita N and Ikeda T: Inhibition of fatty acid synthesis induces apoptosis of human pancreatic cancer cells. Anticancer Res. 36:4655–4660. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Buckley D, Kemble G and Heuer TS: Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2:806–822. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Furuta E, Iiizumi M, et al: Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res. 66:5934–5940. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Xing P, Wang Y, Liu M, Qiu L, Ying G and Li B: NADPH accumulation is responsible for apoptosis in breast cancer cells induced by fatty acid synthase inhibition. Oncotarget. 8:32576–32585. 2017.PubMed/NCBI | |
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H and Andreeff M: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 120:142–156. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boren J and Brindle KM: Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 19:1561–1570. 2012. View Article : Google Scholar : PubMed/NCBI | |
White E: Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 12:401–410. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jia SN, Lin C, Chen DF, Li AQ, Dai L, Zhang L, Zhao LL, Yang JS, Yang F and Yang WJ: The transcription factor p8 regulates autophagy in response to palmitic acid stress via a mammalian target of rapamycin (mTOR)-independent signaling pathway. J Biol Chem. 291:4462–4472. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wen YA, Xing X, Harris JW, Zaytseva YY, Mitov MI, Napier DL, Weiss HL, Mark Evers B and Gao T: Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 8:e25932017. View Article : Google Scholar : PubMed/NCBI | |
Niso-Santano M, Malik SA, Pietrocola F, Pedro Bravo-San JM, Mariño G, Cianfanelli V, Ben-Younès A, Troncoso R, Markaki M, Sica V, et al: Unsaturated fatty acids induce non-canonical autophagy. EMBO J. 34:1025–1041. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lochner M, Berod L and Sparwasser T: Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36:81–91. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kleinfeld AM and Okada C: Free fatty acid release from human breast cancer tissue inhibits cytotoxic T-lymphocyte-mediated killing. J Lipid Res. 46:1983–1990. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor V, ElGindi M, et al: NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 531:253–257. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, et al: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 3:1236–1247. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao W and Gabrilovich D: Abstract 3649: Contribution of fatty acid accumulation to myeloid-derived suppressor cell function in cancer. Cancer Res. 71:36492011. View Article : Google Scholar : PubMed/NCBI | |
Harris DT: Changes in plasma membrane phospholipids inhibit antibody-mediated lysis. Biochem Biophys Res Commun. 417:231–236. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaikh SR and Edidin M: Immunosuppressive effects of polyunsaturated fatty acids on antigen presentation by human leukocyte antigen class I molecules. J Lipid Res. 48:127–138. 2007. View Article : Google Scholar : PubMed/NCBI | |
Harris DT: Alterations in target cell membrane phospholipids alter T cell but not NK cell killing. Immunobiology. 218:21–27. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yoo TJ, Kuo CY, Spector AA, Denning GM, Floyd R, Whiteaker S, Kim H, Kim J, Abbas M and Budd TW: Effect of fatty acid modification of cultured hepatoma cells on susceptibility to natural killer cells. Cancer Res. 42:3596–3600. 1982.PubMed/NCBI | |
Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ and Finkel T: Fatty acid oxidation in macrophage polarization. Nat Immunol. 17:216–217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luan B, Yoon YS, Le LJ, Kaestner KH, Hedrick S and Montminy M: CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA. 112:15642–15647. 2015.PubMed/NCBI | |
Kalinski P: Regulation of immune responses by prostaglandin E2. J Immunol. 188:21–28. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ford JH: Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age (Dordr). 32:231–237. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maeda M, Scaglia N and Igal RA: Regulation of fatty acid synthesis and Delta9-desaturation in senescence of human fibroblasts. Life Sci. 84:119–124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang Y, Huang Y, Zeng H, Hu B, Guan L, Zhang H, Yu AM, Johnson CH, Gonzalez FJ, et al: PPARα regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C. Carcinogenesis. 38:474–483. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ponnusamy S, Alderson NL, Hama H, Bielawski J, Jiang JC, Bhandari R, Snyder SH, Jazwinski SM and Ogretmen B: Regulation of telomere length by fatty acid elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 function. J Biol Chem. 283:27514–27524. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eitsuka T, Nakagawa K, Suzuki T and Miyazawa T: Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: A dual mechanism approach. Biochim Biophys Acta. 1737:1–10. 2005. View Article : Google Scholar : PubMed/NCBI | |
Eitsuka T, Nakagawa K and Miyazawa T: Dual mechanisms for telomerase inhibition in DLD-1 human colorectal adenocarcinoma cells by polyunsaturated fatty acids. Biofactors. 21:19–21. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mizushina Y, Takeuchi T, Sugawara F and Yoshida H: Anti-cancer targeting telomerase inhibitors: β-rubromycin and oleic acid. Mini Rev Med Chem. 12:1135–1143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scaglia N, Tyekucheva S, Zadra G, Photopoulos C and Loda M: De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 13:859–868. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cai L and Tu BP: Acetyl-CoA drives the transcriptional growth program in yeast. Cell Cycle. 10:3045–3046. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mauvoisin D, Charfi C, Lounis AM, Rassart E and Mounier C: Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci. 104:36–42. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee D, Wada K, Taniguchi Y, Al-Shareef H, Masuda T, Usami Y, Aikawa T, Okura M, Kamisaki Y and Kogo M: Expression of fatty acid binding protein 4 is involved in the cell growth of oral squamous cell carcinoma. Oncol Rep. 31:1116–1120. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Lin LP, Zhu CH, Chen Y, Hou YT and Ding J: Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. Cancer Biol Ther. 5:978–985. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Zhou S, Xiang R, Zhao Z, Liu S, Ding N, Gong S, Lin Y, Li X, Bai X, et al: An Ω-3 fatty acid desaturase-expressing gene attenuates prostate cancer proliferation by cell cycle regulation. Oncol Lett. 13:3717–3721. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hollstein M, Sidransky D, Vogelstein B and Harris CC: p53 mutations in human cancers. Science. 253:49–53. 1991. View Article : Google Scholar : PubMed/NCBI | |
Saadi H, Seillier M and Carrier A: The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie. 118:44–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
Parrales A and Iwakuma T: p53 as a regulator of lipid metabolism in cancer. Int J Mol Sci. 17:E20742016. View Article : Google Scholar : PubMed/NCBI | |
Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, et al: Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 68:1003–1011. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Li T, Li X, Zhang L, Sun L, He X, Zhong X, Jia D, Song L, Semenza GL, et al: HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8:1930–1942. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang H, Zhang J, Lv J and Huang Y: Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. Cancer Sci. 104:416–422. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI | |
Patterson WL III and Georgel PT: Breaking the cycle: The role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers. Biochem Cell Biol. 92:321–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Calder PC: n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 83 Suppl 6:S1505–S1519. 2006. View Article : Google Scholar | |
Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, Milazzo M, D'Angelo L, Napolitano M, Chieco P, et al: Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic acid-free fatty acid in colon cancer cells. Sci Rep. 6:206702016. View Article : Google Scholar : PubMed/NCBI | |
Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C and Kehrl JH: Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One. 9:e979572014. View Article : Google Scholar : PubMed/NCBI | |
Hansen KJ and Houten BV: Investigating the metabolic relationship between ovarian cancer cells and adipocytes: The role of fatty acid beta-oxidation. Gynecol Oncol. 137 Suppl 1:S1102015. View Article : Google Scholar | |
Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Res. 76:4051–4057. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tennant DA, Durán RV and Gottlieb E: Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10:267–277. 2010. View Article : Google Scholar : PubMed/NCBI | |
Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD and Kuhajda FP: Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 288:2379–2381. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kridel SJ, Axelrod F, Rozenkrantz N and Smith JW: Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64:2070–2075. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoover HS, Blankman JL, Niessen S and Cravatt BF: Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg Med Chem Lett. 18:5838–5841. 2008. View Article : Google Scholar : PubMed/NCBI | |
Puig T, Benhamu B, Turrado C, Relat J, Ortega-Gutierrez S, Casals G, Marrero PF, Haro D, Brunet J, Lopez-Rodriguez ML and Colomer R: Novel poliphenolic inhibitors of fatty acid synthase (FASN) have potential as anticancer agents. Cancer Res. 68:2008. | |
Infante J, Patel M, Hoff DV, Brenner A, Rubino C, McCulloch W, Zhukova-Harrill V and Parsey M: 3LBA Initial report of a first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. Eur J Cancer. 50 Suppl 6:S195–S196. 2014. View Article : Google Scholar | |
Vázquez MJ, Leavens W, Liu R, Rodríguez B, Read M, Richards S, Winegar D and Domínguez JM: Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the beta-ketoacyl reductase reaction. FEBS J. 275:1556–1567. 2008. View Article : Google Scholar : PubMed/NCBI | |
Linehan WM, Srinivasan R and Schmidt LS: The genetic basis of kidney cancer: A metabolic disease. Nat Rev Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wishart DS: Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2:478–479. 2015. View Article : Google Scholar : PubMed/NCBI | |
Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen T and Li H: Fatty acid metabolism and prospects for targeted therapy of cancer. Eur J Lipid Sci Tec. 119:2017. | |
Mariette G, Anne T, Pierre A, Clavel-Chapelon F and Nicole C: Dietary fat, fatty acid composition and risk of cancer. Eur J Lipid Sci Tec. 107:540–559. 2010. | |
Balaban S, Lee LS, Schreuder M and Hoy AJ: Obesity and cancer progression: Is there a role of fatty acid metabolism? Biomed Res Int. 2015:2745852015. View Article : Google Scholar : PubMed/NCBI |