1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lavi A and Cohen M: Prostate cancer early
detection using psa-current trends and recent updates. Harefuah.
156:185–188. 2017.(In Hebrew). PubMed/NCBI
|
3
|
Filella X and Foj L: Prostate cancer
detection and prognosis: From prostate specific antigen (PSA) to
exosomal biomarkers. Int J Mol Sci. 17:pii: E1784. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kirby R: The role of PSA in detection and
management of prostate cancer. Practitioner. 260(17–21): 32016.
|
5
|
Bednarova S, Lindenberg ML, Vinsensia M,
Zuiani C, Choyke PL and Turkbey B: Positron emission tomography
(PET) in primary prostate cancer staging and risk assessment.
Transl Androl Urol. 6:413–423. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wallis CJD, Haider MA and Nam RK: Role of
mpMRI of the prostate in screening for prostate cancer. Transl
Androl Urol. 6:464–471. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Johnson DC and Reiter RE: Multi-parametric
magnetic resonance imaging as a management decision tool. Transl
Androl Urol. 6:472–482. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Balacescu O, Petrut B, Tudoran O, Feflea
D, Balacescu L, Anghel A, Sirbu IO, Seclaman E and Marian C:
Urinary microRNAs for prostate cancer diagnosis, prognosis, and
treatment response: Are we there yet? Wiley Interdiscip Rev RNA.
8:2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Martignano F, Rossi L, Maugeri A, Gallà V,
Conteduca V, De Giorgi U, Casadio V and Schepisi G: Urinary
RNA-based biomarkers for prostate cancer detection. Clin Chim Acta.
473:96–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mishra S, Yadav T and Rani V: Exploring
miRNA based approaches in cancer diagnostics and therapeutics. Crit
Rev Oncol Hematol. 98:12–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Han C, Shen JK, Hornicek FJ, Kan Q and
Duan Z: Regulation of microRNA-1 (miR-1) expression in human
cancer. Biochim Biophys Acta Gene Regul Mech. 1860:227–232. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Rigaud VO, Ferreira LR, Ayub-Ferreira SM,
Ávila MS, Brandão SM, Cruz FD, Santos MH, Cruz CB, Alves MS, Issa
VS, et al: Circulating miR-1 as a potential biomarker of
doxorubicin-induced cardiotoxicity in breast cancer patients.
Oncotarget. 8:6994–7002. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu X, Li S, Xu X, Wu S, Chen R, Jiang Q,
Li Y and Xu Y: The potential value of miR-1 and miR-374b as
biomarkers for colorectal cancer. Int J Clin Exp Pathol.
8:2840–2851. 2015.PubMed/NCBI
|
14
|
Wei W, Leng J, Shao H and Wang W: MiR-1, a
potential predictive biomarker for recurrence in prostate cancer
after radical prostatectomy. Am J Med Sci. 353:315–319. 2017.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Di W, Li Q, Shen W, Guo H and Zhao S: The
long non-coding RNA HOTAIR promotes thyroid cancer cell growth,
invasion and migration through the miR-1-CCND2 axis. Am J Cancer
Res. 7:1298–1309. 2017.PubMed/NCBI
|
16
|
Xu W, Zhang Z, Zou K, Cheng Y, Yang M,
Chen H, Wang H, Zhao J, Chen P, He L, et al: MiR-1 suppresses tumor
cell proliferation in colorectal cancer by inhibition of
Smad3-mediated tumor glycolysis. Cell Death Dis. 8:e27612017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Shang A, Yang M, Shen F, Wang J, Wei J,
Wang W, Lu W and Wang C and Wang C: MiR-1-3p Suppresses the
proliferation, invasion and migration of bladder cancer cells by
up-regulating sfrp1 expression. Cell Physiol Biochem. 41:1179–1188.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu R, Li J, Lai Y, Liao Y, Liu R and Qiu
W: Hsa-miR-1 suppresses breast cancer development by
down-regulating K-ras and long non-coding RNA MALAT1. Int J Biol
Macromol. 81:491–497. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chang YS, Chen WY, Yin JJ,
Sheppard-Tillman H, Huang J and Liu YN: EGF Receptor promotes
prostate cancer bone metastasis by downregulating mir-1 and
activating TWIST1. Cancer Res. 75:3077–3086. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stope MB, Stender C, Schubert T, Peters S,
Weiss M, Ziegler P, Zimmermann U, Walther R and Burchardt M:
Heat-shock protein HSPB1 attenuates microRNA miR-1 expression
thereby restoring oncogenic pathways in prostate cancer cells.
Anticancer Res. 34:3475–3480. 2014.PubMed/NCBI
|
21
|
Deng M, Bragelmann J, Schultze JL and
Perner S: Web-TCGA: An online platform for integrated analysis of
molecular cancer data sets. BMC Bioinformatics. 17:722016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Anders S and Huber W: Differential
expression analysis for sequence count data. Genome Biol.
11:R1062010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dweep H and Gretz N: miRWalk2.0: A
comprehensive atlas of microRNA-target interactions. Nat Methods.
12:6972015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pashaei E, Pashaei E, Ahmady M, Ozen M and
Aydin N: Meta-analysis of miRNA expression profiles for prostate
cancer recurrence following radical prostatectomy. PLoS One.
12:e01795432017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gravina GL, Festuccia C, Bonfili P, Di
Staso M, Franzese P, Ruggieri V, Popov VM, Tombolini V, Masciocchi
C, Carosa E, et al: Strategies for imaging androgen receptor
signaling pathway in prostate cancer: Implications for hormonal
manipulation and radiation treatment. Biomed Res Int.
2013:4605462013.PubMed/NCBI
|
28
|
Attard G, Richards J and de Bono JS: New
strategies in metastatic prostate cancer: Targeting the androgen
receptor signaling pathway. Clin Cancer Res. 17:1649–1657. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang L, Song G, Chang X, Tan W, Pan J, Zhu
X, Liu Z, Qi M, Yu J and Han B: The role of TXNDC5 in
castration-resistant prostate cancer-involvement of androgen
receptor signaling pathway. Oncogene. 34:4735–4745. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ylitalo EB, Thysell E, Jernberg E,
Lundholm M, Crnalic S, Egevad L, Stattin P, Widmark A, Bergh A and
Wikström P: Subgroups of castration-resistant prostate cancer bone
metastases defined through an inverse relationship between androgen
receptor activity and immune response. Eur Urol. 71:776–787. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Pinto F, Pértega-Gomes N, Vizcaino JR,
Andrade RP, Cárcano FM and Reis RM: Brachyury as a potential
modulator of androgen receptor activity and a key player in therapy
resistance in prostate cancer. Oncotarget. 7:28891–28902. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ware KE, Somarelli JA, Schaeffer D, Li J,
Zhang T, Park S, Patierno SR, Freedman J, Foo WC, Garcia-Blanco MA
and Armstrong AJ: Snail promotes resistance to enzalutamide through
regulation of androgen receptor activity in prostate cancer.
Oncotarget. 7:50507–50521. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Y, Ledet RJ, Imberg-Kazdan K, Logan
SK and Garabedian MJ: Dynein axonemal heavy chain 8 promotes
androgen receptor activity and associates with prostate cancer
progression. Oncotarget. 7:49268–49280. 2016.PubMed/NCBI
|
34
|
Jiang J, Jia P, Shen B and Zhao Z: Top
associated SNPs in prostate cancer are significantly enriched in
cis-expression quantitative trait loci and at transcription factor
binding sites. Oncotarget. 5:6168–6177. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Eisermann K, Tandon S, Bazarov A, Brett A,
Fraizer G and Piontkivska H: Evolutionary conservation of zinc
finger transcription factor binding sites in promoters of genes
co-expressed with WT1 in prostate cancer. BMC Genomics. 9:3372008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kojima S, Enokida H, Yoshino H, Itesako T,
Chiyomaru T, Kinoshita T, Fuse M, Nishikawa R, Goto Y, Naya Y, et
al: The tumor-suppressive microRNA-143/145 cluster inhibits cell
migration and invasion by targeting GOLM1 in prostate cancer. J Hum
Genet. 59:78–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li SX, Tong YP, Xie XC, Wang QH, Zhou HN,
Han Y, Zhang ZY, Gao W, Li SG, Zhang XC and Bi RC: Octameric
structure of the human bifunctional enzyme PAICS in purine
biosynthesis. J Mol Biol. 366:1603–1614. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gallenne T, Ross KN, Visser NL, Salony,
Desmet CJ, Wittner BS, Wessels LFA, Ramaswamy S and Peeper DS:
Systematic functional perturbations uncover a prognostic genetic
network driving human breast cancer. Oncotarget. 8:20572–20587.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Goswami MT, Chen G, Chakravarthi BV, Pathi
SS, Anand SK, Carskadon SL, Giordano TJ, Chinnaiyan AM, Thomas DG,
Palanisamy N, et al: Role and regulation of coordinately expressed
de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer.
Oncotarget. 6:23445–23461. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cifola I, Pietrelli A, Consolandi C,
Severgnini M, Mangano E, Russo V, De Bellis G and Battaglia C:
Comprehensive genomic characterization of cutaneous malignant
melanoma cell lines derived from metastatic lesions by whole-exome
sequencing and SNP array profiling. PLoS One. 8:e635972013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Chakravarthi BV, Goswami MT, Pathi SS,
Dodson M, Chandrashekar DS, Agarwal S, Nepal S, Balasubramanya
Hodigere SA, Siddiqui J, Lonigro RJ, et al: Expression and role of
PAICS, a de novo purine biosynthetic gene in prostate cancer.
Prostate. 77:10–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gall TM and Frampton AE: Gene of the
month: E-cadherin (CDH1). J Clin Pathol. 66:928–932. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Li D, Zhang R, Jin T, He N, Ren L, Zhang
Z, Zhang Q, Xu R, Tao H, Zeng G and Gao J: ADH1B and CDH1
polymorphisms predict prognosis in male patients with
non-metastatic laryngeal cancer. Oncotarget. 7:73216–73228.
2016.PubMed/NCBI
|
44
|
Jiao F, Hu H, Han T, Zhuo M, Yuan C, Yang
H and Wang L and Wang L: Aberrant expression of nuclear HDAC3 and
cytoplasmic CDH1 predict a poor prognosis for patients with
pancreatic cancer. Oncotarget. 7:16505–16516. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu Q, Guo Q, Chen L and Liu S:
Clinicopathological significance and potential drug targeting of
CDH1 in lung cancer: A meta-analysis and literature review. Drugb
Des Devel Ther. 9:2171–2178. 2015.
|
46
|
Huang R, Ding P and Yang F:
Clinicopathological significance and potential drug target of CDH1
in breast cancer: A meta-analysis and literature review. Drug Des
Devel Ther. 9:5277–5285. 2015.PubMed/NCBI
|
47
|
Zeng W, Zhu J, Shan L, Han Z, Aerxiding P,
Quhai A, Zeng F, Wang Z and Li H: The clinicopathological
significance of CDH1 in gastric cancer: A meta-analysis and
systematic review. Drug Des Devel Ther. 9:2149–2157. 2015.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Qiu LX, Li RT, Zhang JB, Zhong WZ, Bai JL,
Liu BR, Zheng MH and Qian XP: The E-cadherin (CDH1)-160 C/A
polymorphism and prostate cancer risk: A meta-analysis. Eur J Hum
Genet. 17:244–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ren H, Du P, Ge Z, Jin Y, Ding D, Liu X
and Zou Q: TWIST1 and BMI1 in cancer metastasis and
chemoresistance. J Cancer. 7:1074–1080. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Liu H, Wang H, Liu X and Yu T: miR-1271
inhibits migration, invasion and epithelial-mesenchymal transition
by targeting ZEB1 and TWIST1 in pancreatic cancer cells. Biochem
Biophys Res Commun. 472:346–352. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li L and Wu D: miR-32 inhibits
proliferation, epithelial-mesenchymal transition, and metastasis by
targeting TWIST1 in non-small-cell lung cancer cells. Onco Targets
Ther. 9:1489–1498. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ávila-Moreno F, Armas-López L,
Álvarez-Moran AM, López-Bujanda Z, Ortiz-Quintero B,
Hidalgo-Miranda A, Urrea-Ramírez F, Rivera-Rosales RM,
Vázquez-Manríquez E, Peña-Mirabal E, et al: Correction:
Overexpression of MEOX2 and TWIST1 is associated with H3K27me3
levels and determines lung cancer chemoresistance and prognosis.
PLoS One. 11:e01465692016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wang T, Hou J, Li Z, Zheng Z, Wei J, Song
D, Hu T, Wu Q, Yang JY and Cai JC: miR-15a-3p and miR-16-1-3p
negatively regulate twist1 to repress gastric cancer cell invasion
and metastasis. Int J Biol Sci. 13:122–134. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Cao C, Sun D, Zhang L and Song L: miR-186
affects the proliferation, invasion and migration of human gastric
cancer by inhibition of Twist1. Oncotarget. 7:79956–79963. 2016.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Matsusaka S, Zhang W, Cao S, Hanna DL,
Sunakawa Y, Sebio A, Ueno M, Yang D, Ning Y, Parekh A, et al:
TWIST1 polymorphisms predict survival in patients with metastatic
colorectal cancer receiving first-line bevacizumab plus
oxaliplatin-based chemotherapy. Mol Cancer Ther. 15:1405–1411.
2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhu DJ, Chen XW, Zhang WJ, Wang JZ, Ouyang
MZ, Zhong Q and Liu CC: Twist1 is a potential prognostic marker for
colorectal cancer and associated with chemoresistance. Am J Cancer
Res. 5:2000–2011. 2015.PubMed/NCBI
|
57
|
Yusup A, Huji B, Fang C, Wang F, Dadihan
T, Wang HJ and Upur H: Expression of trefoil factors and TWIST1 in
colorectal cancer and their correlation with metastatic potential
and prognosis. World J Gastroenterol. 23:110–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Malek R, Gajula RP, Williams RD, Nghiem B,
Simons BW, Nugent K, Wang H, Taparra K, Lemtiri-Chlieh G, Yoon AR,
et al: TWIST1-WDR5-hottip regulates hoxa9 chromatin to facilitate
prostate cancer metastasis. Cancer Res. 77:3181–3193. 2017.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Zhao X, Deng R, Wang Y, Zhang H, Dou J, Li
L, Du Y, Chen R, Cheng J and Yu J: Twist1/Dnmt3a and miR186
establish a regulatory circuit that controls
inflammation-associated prostate cancer progression. Oncogenesis.
6:e3152017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Zhao X, Wang Y, Deng R, Zhang H, Dou J,
Yuan H, Hou G, Du Y, Chen Q and Yu J: miR186 suppresses prostate
cancer progression by targeting Twist1. Oncotarget. 7:33136–33151.
2016.PubMed/NCBI
|
61
|
Cho KH, Choi MJ, Jeong KJ, Kim JJ, Hwang
MH, Shin SC, Park CG and Lee HY: A ROS/STAT3/HIF-1α signaling
cascade mediates EGF-induced TWIST1 expression and prostate cancer
cell invasion. Prostate. 74:528–536. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gajula RP, Chettiar ST, Williams RD,
Thiyagarajan S, Kato Y, Aziz K, Wang R, Gandhi N, Wild AT, Vesuna
F, et al: The twist box domain is required for Twist1-induced
prostate cancer metastasis. Mol Cancer Res. 11:1387–1400. 2013.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Cho KH, Jeong KJ, Shin SC, Kang J, Park CG
and Lee HY: STAT3 mediates TGF-β1-induced TWIST1 expression and
prostate cancer invasion. Cancer Lett. 336:167–173. 2013.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Xu Z, Zhou Y, Cao Y, Dinh TL, Wan J and
Zhao M: Identification of candidate biomarkers and analysis of
prognostic values in ovarian cancer by integrated bioinformatics
analysis. Med Oncol. 33:1302016. View Article : Google Scholar : PubMed/NCBI
|
65
|
Ho JR, Chapeaublanc E, Kirkwood L, Nicolle
R, Benhamou S, Lebret T, Allory Y, Southgate J, Radvanyi F and Goud
B: Deregulation of Rab and Rab effector genes in bladder cancer.
PLoS One. 7:e394692012. View Article : Google Scholar : PubMed/NCBI
|
66
|
Gilling CE, Mittal AK, Chaturvedi NK,
Iqbal J, Aoun P, Bierman PJ, Bociek RG, Weisenburger DD and Joshi
SS: Lymph node-induced immune tolerance in chronic lymphocytic
leukaemia: A role for caveolin-1. Br J Haematol. 158:216–231. 2012.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Abdelgawad IA, Radwan NH and Hassanein HR:
KIAA0101 mRNA expression in the peripheral blood of hepatocellular
carcinoma patients: Association with some clinicopathological
features. Clin Biochem. 49:787–791. 2016. View Article : Google Scholar : PubMed/NCBI
|
68
|
Yuan RH, Jeng YM, Pan HW, Hu FC, Lai PL,
Lee PH and Hsu HC: Overexpression of KIAA0101 predicts high stage,
early tumor recurrence, and poor prognosis of hepatocellular
carcinoma. Clin Cancer Res. 13:5368–5376. 2007. View Article : Google Scholar : PubMed/NCBI
|
69
|
Liu L, Liu Y, Chen X, Wang M, Zhou Y, Zhou
P, Li W and Zhu F: Variant 2 of KIAA0101, antagonizing its
oncogenic variant 1, might be a potential therapeutic strategy in
hepatocellular carcinoma. Oncotarget. 8:43990–44003.
2017.PubMed/NCBI
|
70
|
Zhu K, Diao D, Dang C, Shi L, Wang J, Yan
R, Yuan D and Li K: Elevated KIAA0101 expression is a marker of
recurrence in human gastric cancer. Cancer Sci. 104:353–359. 2013.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Zhang CF, Xia YH, Zheng QF, Li ZJ, Guo XH,
Zhou HC, Zhang LL, Dong LP and Han Y: Effects of KIAA0101
expression on proliferation and invasion of gastric carcinoma
MKN-45 cells. Zhonghua Bing Li Xue Za Zhi. 41:553–557. 2012.(In
Chinese). PubMed/NCBI
|
72
|
Kato T, Daigo Y, Aragaki M, Ishikawa K,
Sato M and Kaji M: Overexpression of KIAA0101 predicts poor
prognosis in primary lung cancer patients. Lung Cancer. 75:110–118.
2012. View Article : Google Scholar : PubMed/NCBI
|
73
|
Cheng Y, Li K, Diao D, Zhu K, Shi L, Zhang
H, Yuan D, Guo Q, Wu X, Liu D and Dang C: Expression of KIAA0101
protein is associated with poor survival of esophageal cancer
patients and resistance to cisplatin treatment in vitro. Lab
Invest. 93:1276–1287. 2013. View Article : Google Scholar : PubMed/NCBI
|
74
|
Fan S and Li X, Tie L, Pan Y and Li X:
KIAA0101 is associated with human renal cell carcinoma
proliferation and migration induced by erythropoietin. Oncotarget.
7:13520–13537. 2016.PubMed/NCBI
|