1
|
Seeger RC, Brodeur GM, Sather H, Dalton A,
Siegel SE, Wong KY and Hammond D: Association of multiple copies of
the N-myc oncogene with rapid progression of neuroblastomas. N Engl
J Med. 313:1111–1116. 1985. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maris JM and Matthay KK: Molecular biology
of neuroblastoma. J Clin Oncol. 17:2264–2279. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Altungoz O, Aygun N, Tumer S, Ozer E,
Olgun N and Sakizli M: Correlation of modified Shimada
classification with MYCN and 1p36 status detected by fluorescence
in situ hybridization in neuroblastoma. Cancer Genet Cytogenet.
172:113–119. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gurney JG, Ross JA, Wall DA, Bleyer WA,
Severson RK and Robison LL: Infant cancer in the U.S.:
Histology-specific incidence and trends, 1973 to 1992. J Pediatr
Hematol Oncol. 19:428–432. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brodeur GM, Seeger RC, Schwab M, Varmus HE
and Bishop JM: Amplification of N-myc in untreated human
neuroblastomas correlates with advanced disease stage. Science.
224:1121–1124. 1984. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bartram CR and Berthold F: Amplification
and expression of the N-myc gene in neuroblastoma. Eur J Pediatr.
146:162–165. 1987. View Article : Google Scholar : PubMed/NCBI
|
7
|
Valent A, Guillaud-Bataille M, Farra C,
Lozach F, Spengler B, Terrier-Lacombe MJ, Valteau-Couanet D,
Danglot G, Lenoir GM, Brison O and Bernheim A: Alternative pathways
of MYCN gene copy number increase in primary neuroblastoma tumors.
Cancer Genet Cytogenet. 153:10–15. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schwab M, Alitalo K, Klempnauer KH, Varmus
HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M and Trent J:
Amplified DNA with limited homology to myc cellular oncogene is
shared by human neuroblastoma cell lines and a neuroblastoma
tumour. Nature. 305:245–248. 1983. View Article : Google Scholar : PubMed/NCBI
|
9
|
Edsjö A, Nilsson H, Vandesompele J,
Karlsson J, Pattyn F, Culp LA, Speleman F and Påhlman S:
Neuroblastoma cells with overexpressed MYCN retain their capacity
to undergo neuronal differentiation. Lab Invest. 84:406–417. 2004.
View Article : Google Scholar : PubMed/NCBI
|
10
|
White PS, Thompson PM, Gotoh T, Okawa ER,
Igarashi J, Kok M, Winter C, Gregory SG, Hogarty MD, Maris JM and
Brodeur GM: Definition and characterization of a region of 1p36.3
consistently deleted in neuroblastoma. Oncogene. 24:2684–2694.
2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Henrich KO, Schwab M and Westermann F:
1p36 tumor suppression-a matter of dosage? Cancer Res.
72:6079–6088. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Aygun N: Biological and genetic features
of neuroblastoma and their clinical importance. Curr Pediatr Rev.
14:73–90. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Raschellà G, Negroni A, Skorski T, Pucci
S, Nieborowska-Skorska M, Romeo A and Calabretta B: Inhibition of
proliferation by c-myb antisense RNA and oligodeoxynucleotides in
transformed neuroectodermal cell lines. Cancer Res. 52:4221–4226.
1992.PubMed/NCBI
|
14
|
Thiele CJ, Reynolds CP and Israel MA:
Decreased expression of N-myc precedes retinoic acid-induced
morphological differentiation of human neuroblastoma. Nature.
313:404–406. 1985. View Article : Google Scholar : PubMed/NCBI
|
15
|
Thiele CJ, Cohen PS and Israel MA:
Regulation of c-myb expression in human neuroblastoma cells during
retinoic acid-induced differentiation. Mol Cell Biol. 8:1677–1683.
1988. View Article : Google Scholar : PubMed/NCBI
|
16
|
Abemayor E and Sidell N: Human
neuroblastoma cell lines as models for the in vitro study of
neoplastic and neuronal cell differentiation. Environ Health
Perspect. 80:3–15. 1989. View Article : Google Scholar : PubMed/NCBI
|
17
|
Aktas S, Altun Z, Erbayraktar Z, Aygun N
and Olgun N: Effect of cytotoxic agents and retinoic acid on Myc-N
protein expression in neuroblastoma. Appl Immunohistochem Mol
Morphol. 18:86–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Guglielmi L, Cinnella C, Nardella M,
Maresca G, Valentini A, Mercanti D, Felsani A and D'Agnano I: MYCN
gene expression is required for the onset of the differentiation
programme in neuroblastoma cells. Cell Death Dis. 5:e10812014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Nomura N, Takahashi M, Matsui M, Ishii S,
Date T, Sasamoto S and Ishizaki R: Isolation of human cDNA clones
of myb-related genes, A-myb and B-myb. Nucleic Acids Res.
16:11075–11089. 1988. View Article : Google Scholar : PubMed/NCBI
|
20
|
Davidson CJ, Tirouvanziam R, Herzenberg LA
and Lipsick JS: Functional evolution of the vertebrate Myb gene
family: B-Myb, but neither A-Myb nor c-Myb, complements
drosophila Myb in hemocytes. Genetics. 169:215–229. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Beall EL, Manak JR, Zhou S, Bell M,
Lipsick JS and Botchan MR: Role for a drosophila
Myb-containing protein complex in site-specific DNA replication.
Nature. 420:833–837. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lu L, Zhang H and Tower J: Functionally
distinct, sequence-specific replicator and origin elements are
required for Drosophila chorion gene amplification. Genes
Dev. 15:134–146. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lewis PW, Beall EL, Fleischer TC,
Georlette D, Link AJ and Botchan MR: Identification of a
Drosophila Myb-E2F2/RBF transcriptional repressor complex.
Genes Dev. 18:2929–2940. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Koga H, Matsui S, Hirota T, Takebayashi S,
Okumura K and Saya H: A human homolog of Drosophila
lethal(3)malignant brain tumor (l(3)mbt) protein associates with
condensed mitotic chromosomes. Oncogene. 18:3799–3809. 1999.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Gurvich N, Perna F, Farina A, Voza F,
Menendez S, Hurwitz J and Nimer SD: L3MBTL1 polycomb protein, a
candidate tumor suppressor in del(20q12) myeloid disorders, is
essential for genome stability. Proc Natl Acad Sci USA.
107:22552–22557. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fujita M: Cdt1 revisited: Complex and
tight regulation during the cell cycle and consequences of
deregulation in mammalian cells. Cell Div. 1:222006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Karakaidos P, Taraviras S, Vassiliou LV,
Zacharatos P, Kastrinakis NG, Kougiou D, Kouloukoussa M, Nishitani
H, Papavassiliou AG, Lygerou Z and Gorgoulis VG: Overexpression of
the replication licensing regulators hCdt1 and hCdc6 characterizes
a subset of non-small-cell lung carcinomas: Synergistic effect with
mutant p53 on tumor growth and chromosomal instability-evidence of
E2F-1 transcriptional control over hCdt1. Am J Pathol.
165:1351–1365. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xouri G, Lygerou Z, Nishitani H, Pachnis
V, Nurse P and Taraviras S: Cdt1 and geminin are down-regulated
upon cell cycle exit and are over-expressed in cancer-derived cell
lines. Eur J Biochem. 271:3368–3378. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wohlschlegel JA, Kutok JL, Weng AP and
Dutta A: Expression of geminin as a marker of cell proliferation in
normal tissues and malignancies. Am J Pathol. 161:267–273. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen L, Iraci N, Gherardi S, Gamble LD,
Wood KM, Perini G, Lunec J and Tweddle DA: p53 is a direct
transcriptional target of MYCN in neuroblastoma. Cancer Res.
70:1377–1388. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Eckerle I, Muth D, Batzler J, Henrich KO,
Lutz W, Fischer M, Witt O, Schwab M and Westermann F: Regulation of
BIRC5 and its isoform BIRC5-2B in neuroblastoma. Cancer Lett.
285:99–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Petroni M, Veschi V, Prodosmo A, Rinaldo
C, Massimi I, Carbonari M, Dominici C, McDowell HP, Rinaldi C,
Screpanti I, et al: MYCN sensitizes human neuroblastoma to
apoptosis by HIPK2 activation through a DNA damage response. Mol
Cancer Res. 9:67–77. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu DX, Biswas SC and Greene LA: B-Myb and
C-Myb play required roles in neuronal apoptosis evoked by nerve
growth factor deprivation and DNA damage. J Neurosci. 24:8720–8725.
2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Aygun N and Altungoz O: Novel structural
abnormalities involving chromosomes 1, 17 and 2 identified by
fluorescence in situ hybridization (FISH) and/or cytogenetic
karyotyping in Kelly and SH-SY5Y human neuroblastoma cell lines,
respectively. J Can Res Updates. 6:46–55. 2017.
|
35
|
Protocol for DNA extraction. DNA
preparation from adherent cells. Section of Cancer Genomics,
Genetics Branch, NCI National Institutes of Health 2 pages. 2006,
https://ccr.cancer.gov/sites/default/files/dna_prep_from_adherent_cells.pdf
|
36
|
Pfaffl MW: A new mathematical model for
relative quantification in real-time RT-PCR. Nucleic Acids Res.
29:e452001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Babicki S, Arndt D, Marcu A, Liang Y,
Grant JR, Maciejewski A and Wishart DS: Heatmapper: Web-enabled
heat mapping for all. Nucleic Acids Res. 44:W147–W153. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Rasmussen R: Quantification on the
LightCycler. Meuer S, Wittwer C and Nakagawara K: Rapid cycle
real-time PCR, methods and applications Heidelberg: Springer Press;
pp. 21–34. 2001, View Article : Google Scholar
|
39
|
Aksakoglu G: Korelasyon ve regresyon
(Correlation and regression): Sağlıkta araştırma teknikleri ve
analiz yöntemleri (Research techniques and analysis methods in
health). 1st. Dokuz Eylul University Press; Izmir: pp. 305–346.
2001, (In Turkish).
|
40
|
Hiller S, Breit S, Wang ZQ, Wagner EF and
Schwab M: Localization of regulatory elements controlling human
MYCN expression. Oncogene. 6:969–977. 1991.PubMed/NCBI
|
41
|
Tower J: Developmental gene amplification
and origin regulation. Annu Rev Genet. 38:273–304. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wright JA, Smith HS, Watt FM, Hancock MC,
Hudson DL and Stark GR: DNA amplification is rare in normal human
cells. Proc Natl Acad Sci USA. 87:1791–1795. 1990. View Article : Google Scholar : PubMed/NCBI
|
43
|
Himoudi N, Yan M, Papanastasiou A and
Anderson J: MYCN as a target for cancer immunotherapy. Cancer
Immunol Immunother. 57:693–700. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Orr-Weaver TL and Spradling AC:
Drosophila chorion gene amplification requires an upstream
region regulating s18 transcription. Mol Cell Biol. 6:4624–4633.
1986. View Article : Google Scholar : PubMed/NCBI
|
45
|
Imamura Y, Iguchi-Ariga SM and Ariga H:
The upstream region of the mouse N-myc gene: Identification of an
enhancer element that functions preferentially in neuroblastoma
IMR32 cells. Biochim Biophys Acta. 1132:177–187. 1992. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen H, Li H, Liu F, Zheng X, Wang S, Bo X
and Shu W: An integrative analysis of TFBS-clustered regions
reveals new transcriptional regulation models on the accessible
chromatin landscape. Sci Rep. 5:84652015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhu W, Giangrande PH and Nevins JR: E2Fs
link the control of G1/S and G2/M transcription. EMBO J.
23:4615–4626. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Nakata Y, Shetzline S, Sakashita C, Kalota
A, Rallapalli R, Rudnick SI, Zhang Y, Emerson SG and Gewirtz AM:
c-Myb contributes to G2/M cell cycle transition in human
hematopoietic cells by direct regulation of cyclin B1 expression.
Mol Cell Biol. 27:2048–2058. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tarasov KV, Tarasova YS, Tam WL, Riordon
DR, Elliott ST, Kania G, Li J, Yamanaka S, Crider DG, Testa G, et
al: B-MYB is essential for normal cell cycle progression and
chromosomal stability of embryonic stem cells. PLoS One.
3:e24782008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kreis NN, Sanhaji M, Rieger MA, Louwen F
and Yuan J: p21Waf1/Cip1 deficiency causes multiple mitotic defects
in tumor cells. Oncogene. 33:5716–5728. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Strieder V and Lutz W: E2F proteins
regulate MYCN expression in neuroblastomas. J Biol Chem.
278:2983–2989. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yoshida K and Inoue I: Regulation of
Geminin and Cdt1 expression by E2F transcription factors. Oncogene.
23:3802–3812. 2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
Radhakrishnan SK, Feliciano CS, Najmabadi
F, Haegebarth A, Kandel ES, Tyner AL and Gartel AL: Constitutive
expression of E2F-1 leads to p21-dependent cell cycle arrest in S
phase of the cell cycle. Oncogene. 23:4173–4176. 2004. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sala A, Casella I, Bellon T, Calabretta B,
Watson RJ and Peschle C: B-myb promotes S phase and is a downstream
target of the negative regulator p107 in human cells. J Biol Chem.
271:9363–9367. 1996. View Article : Google Scholar : PubMed/NCBI
|
55
|
Markey M, Siddiqui H and Knudsen ES:
Geminin is targeted for repression by the retinoblastoma tumor
suppressor pathway through intragenic E2F sites. J Biol Chem.
279:29255–29262. 2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Sala A, Nicolaides NC, Engelhard A, Bellon
T, Lawe DC, Arnold A, Graña X, Graña X, Giordano A and Calabretta
B: Correlation between E2F-1 requirement in the S phase and E2F-1
transactivation of cell cycle-related genes in human cells. Cancer
Res. 54:1402–1406. 1994.PubMed/NCBI
|
57
|
Brodeur GM: Neuroblastoma: Biological
insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Stiewe T and Pützer BM: Role of the
p53-homologue p73 in E2F1-induced apoptosis. Nat Genet. 26:464–469.
2000. View Article : Google Scholar : PubMed/NCBI
|
59
|
Goldschneider D, Blanc E, Raguénez G,
Barrois M, Legrand A, Le Roux G, Haddada H, Bénard J and Douc-Rasy
S: Differential response of p53 target genes to p73 overexpression
in SH-SY5Y neuroblastoma cell line. J Cell Sci. 117:293–301. 2004.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Fontana L, Fiori ME, Albini S, Cifaldi L,
Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V,
Giacomini P, et al: Antagomir-17-5p abolishes the growth of
therapy-resistant neuroblastoma through p21 and BIM. PLoS One.
3:e22362008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Tang XX, Zhao H, Kung B, Kim DY, Hicks SL,
Cohn SL, Cheung NK, Seeger RC, Evans AE and Ikegaki N: The MYCN
enigma: Significance of MYCN expression in neuroblastoma. Cancer
Res. 66:2826–2833. 2006. View Article : Google Scholar : PubMed/NCBI
|
62
|
Jost CA, Marin MC and Kaelin WG Jr: p73 is
a human p53-related protein that can induce apoptosis. Nature.
389:191–194. 1997. View
Article : Google Scholar : PubMed/NCBI
|
63
|
Kaghad M, Bonnet H, Yang A, Creancier L,
Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, et al:
Monoallelically expressed gene related to p53 at 1p36, a region
frequently deleted in neuroblastoma and other human cancers. Cell.
90:809–819. 1997. View Article : Google Scholar : PubMed/NCBI
|
64
|
Lau LM, Wolter JK, Lau JT, Cheng LS, Smith
KM, Hansford LM, Zhang L, Baruchel S, Robinson F and Irwin MS:
Cyclooxygenase inhibitors differentially modulate p73 isoforms in
neuroblastoma. Oncogene. 28:2024–2033. 2009. View Article : Google Scholar : PubMed/NCBI
|
65
|
Fukasawa K, Wiener F, Vande Woude GF and
Mai S: Genomic instability and apoptosis are frequent in p53
deficient young mice. Oncogene. 15:1295–1302. 1997. View Article : Google Scholar : PubMed/NCBI
|
66
|
Prochazka P, Hrabeta J, Vicha A, Cipro S,
Stejskalova E, Musil Z, Vodicka P and Eckschlager T: Changes in
MYCN expression in human neuroblastoma cell lines following
cisplatin treatment may not be related to MYCN copy numbers. Oncol
Rep. 29:2415–2421. 2013. View Article : Google Scholar : PubMed/NCBI
|
67
|
Henrichsen CN, Chaignat E and Reymond A:
Copy number variants, diseases and gene expression. Hum Mol Genet.
18:R1–R8. 2009. View Article : Google Scholar : PubMed/NCBI
|
68
|
Sexton T, Umlauf D, Kurukuti S and Fraser
P: The role of transcription factories in large-scale structure and
dynamics of interphase chromatin. Semin Cell Dev Biol. 18:691–697.
2007. View Article : Google Scholar : PubMed/NCBI
|
69
|
Pihan GA, Purohit A, Wallace J, Knecht H,
Woda B, Quesenberry P and Doxsey SJ: Centrosome defects and genetic
instability in malignant tumors. Cancer Res. 58:3974–3985.
1998.PubMed/NCBI
|
70
|
Adon AM, Zeng X, Harrison MK, Sannem S,
Kiyokawa H, Kaldis P and Saavedra HI: Cdk2 and Cdk4 regulate the
centrosome cycle and are critical mediators of centrosome
amplification in p53-null cells. Mol Cell Biol. 30:694–710. 2010.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Sugihara E, Kanai M, Matsui A, Onodera M,
Schwab M and Miwa M: Enhanced expression of MYCN leads to
centrosome hyperamplification after DNA damage in neuroblastoma
cells. Oncogene. 23:1005–1009. 2004. View Article : Google Scholar : PubMed/NCBI
|
72
|
Mantel C, Braun SE, Reid S, Henegariu O,
Liu L, Hangoc G and Broxmeyer HE: p21(cip-1/waf-1) deficiency
causes deformed nuclear architecture, centriole overduplication,
polyploidy, and relaxed microtubule damage checkpoints in human
hematopoietic cells. Blood. 93:1390–1398. 1999.PubMed/NCBI
|
73
|
Stewart ZA, Leach SD and Pietenpol JA:
p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents
endoreduplication after mitotic spindle disruption. Mol Cell Biol.
19:205–215. 1999. View Article : Google Scholar : PubMed/NCBI
|
74
|
Chen J, Willingham T, Shuford M, Bruce D,
Rushing E, Smith Y and Nisen PD: Effects of ectopic overexpression
of p21(WAF1/CIP1) on aneuploidy and the malignant phenotype of
human brain tumor cells. Oncogene. 13:1395–1403. 1996.PubMed/NCBI
|
75
|
Quinn LM, Herr A, McGarry TJ and
Richardson H: The Drosophila geminin homolog: Roles for
Geminin in limiting DNA replication, in anaphase and in
neurogenesis. Genes Dev. 15:2741–2754. 2001. View Article : Google Scholar : PubMed/NCBI
|
76
|
Clijsters L, Ogink J and Wolthuis R: The
spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) play distinct
roles in connecting mitosis to S phase. J Cell Biol. 201:1013–1026.
2013. View Article : Google Scholar : PubMed/NCBI
|
77
|
Biedler JL and Spengler BA: A novel
chromosome abnormality in human neuroblastoma and
antifolate-resistant Chinese hamster cell lines in culture. J Natl
Cancer Inst. 57:683–695. 1976. View Article : Google Scholar : PubMed/NCBI
|
78
|
Amler LC and Schwab M: Amplified N-myc in
human neuroblastoma cells is often arranged as clustered tandem
repeats of differently recombined DNA. Mol Cell Biol. 9:4903–4913.
1989. View Article : Google Scholar : PubMed/NCBI
|
79
|
Lo AW, Sabatier L, Fouladi B, Pottier G,
Ricoul M and Murnane JP: DNA amplification by
breakage/fusion/bridge cycles initiated by spontaneous telomere
loss in a human cancer cell line. Neoplasia. 4:531–538. 2002.
View Article : Google Scholar : PubMed/NCBI
|
80
|
Schwab M: Human neuroblastoma: From basic
science to clinical debut of cellular oncogenes.
Naturwissenschaften. 86:71–78. 1999. View Article : Google Scholar : PubMed/NCBI
|
81
|
Watanabe T, Tanabe H and Horiuchi T: Gene
amplification system based on double rolling-circle replication as
a model for oncogene-type amplification. Nucleic Acids Res.
39:e1062011. View Article : Google Scholar : PubMed/NCBI
|
82
|
Blumrich A, Zapatka M, Brueckner LM,
Zheglo D, Schwab M and Savelyeva L: The FRA2C common fragile site
maps to the borders of MYCN amplicons in neuroblastoma and is
associated with gross chromosomal rearrangements in different
cancers. Hum Mol Genet. 20:1488–1501. 2011. View Article : Google Scholar : PubMed/NCBI
|
83
|
Slack A, Thornton PC, Magner DB, Rosenberg
SM and Hastings PJ: On the mechanism of gene amplification induced
under stress in Escherichia coli. PLoS Genet. 2:e482006. View Article : Google Scholar : PubMed/NCBI
|
84
|
Aygun N: Acquired chromosomal
abnormalities and their potential formation mechanisms in solid
tumours. In: Chromosomal abnormalities-a hallmark manifestation of
genomic instability. Larramendy M: InTech. pp. 27–70. 2017,
https://www.intechopen.com/books/chromosomal-abnormalities-a-hallmark-manifestation-of-genomic-instability/acquired-chromosomal-abnormalities-and-their-potential-formation-mechanisms-in-solid-tumours
|
85
|
Forbes SA, Beare D, Boutselakis H, Bamford
S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al:
COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids
Res. 45:D777–D783. 2017. View Article : Google Scholar : PubMed/NCBI
|
86
|
Aygun N: Correlations between long
inverted repeat (LIR) features, deletion size and distance from
breakpoint in human gross gene deletions. Sci Rep. 5:83002015.
View Article : Google Scholar : PubMed/NCBI
|
87
|
Lai PJ, Lim CT, Le HP, Katayama T, Leach
DR, Furukohri A and Maki H: Long inverted repeat transiently stalls
DNA replication by forming hairpin structures on both leading and
lagging strands. Genes Cells. 21:136–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
88
|
Voineagu I, Narayanan V, Lobachev KS and
Mirkin SM: Replication stalling at unstable inverted repeats:
Interplay between DNA hairpins and fork stabilizing proteins. Proc
Natl Acad Sci USA. 105:9936–9941. 2008. View Article : Google Scholar : PubMed/NCBI
|
89
|
Conrad DF, Bird C, Blackburne B, Lindsay
S, Mamanova L, Lee C, Turner DJ and Hurles ME: Mutation spectrum
revealed by breakpoint sequencing of human germline CNVs. Nat
Genet. 42:385–391. 2010. View
Article : Google Scholar : PubMed/NCBI
|
90
|
Hastings PJ, Ira G and Lupski JR: A
microhomology-mediated break-induced replication model for the
origin of human copy number variation. PLoS Genet. 5:e10003272009.
View Article : Google Scholar : PubMed/NCBI
|