1
|
Falodah FA and Al-Karim S: Immuno- and
gene expression analysis of EGFR and Nestin during mice skin
development. Tissue Cell. 48:274–281. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mistriotis P and Andreadis ST: Hair
follicle: A novel source of multipotent stem cells for tissue
engineering and regenerative medicine. Tissue Eng Part B Rev.
19:265–278. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Takeo M, Lee W and Ito M: Wound healing
and skin regeneration. Cold Spring Harb Perspect Med.
5:a0232672015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Myung PS, Takeo M, Ito M and Atit RP:
Epithelial Wnt ligand secretion is required for adult hair follicle
growth and regeneration. J Invest Dermatol. 133:31–41. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hsu YC, Li L and Fuchs E: Emerging
interactions between skin stem cells and their niches. Nat Med.
20:847–856. 2014. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Higgins CA, Chen JC, Cerise JE, Jahoda CA
and Christiano AM: Microenvironmental reprogramming by
three-dimensional culture enables dermal papilla cells to induce de
novo human hair-follicle growth. Proc Natl Acad Sci USA.
110:19679–19688. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Biernaskie J, Paris M, Morozova O, Fagan
BM, Marra M, Pevny L and Miller FD: SKPs derive from hair follicle
precursors and exhibit properties of adult dermal stem cells. Cell
Stem Cell. 5:610–623. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sennett R and Rendl M:
Mesenchymal-epithelial interactions during hair follicle
morphogenesis and cycling. Semin Cell Dev Biol. 23:917–927. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Li L, Mignone J, Yang M, Matic M, Penman
S, Enikolopov G and Hoffman RM: Nestin expression in hair follicle
sheath progenitor cells. ProcNatlAcad Sci USA. 100:9958–9961. 2003.
View Article : Google Scholar
|
10
|
Matsumura H, Mohri Y, Binh NT, Morinaga H,
Fukuda M, Ito M, Kurata S, Hoeijmakers J and Nishimura EK: Hair
follicle aging is driven by transepidermal elimination of stem
cells via COL17A1 proteolysis. Science. 35:1aad43952016.
|
11
|
Kandyba E and Kobielak K: Wnt7b is an
important intrinsic regulator of hair follicle stem cell
homeostasis and hair follicle cycling. Stem Cells. 32:886–901.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hoffman RM: Nestin-expressing hair
follicle-accessible pluripotent stem cells for nerve and spinal
cord repair. Cells Tissues Organs. 200:42–47. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Müller-Röver S, Handjiski B, van der Veen
C, Eichmüller S, Foitzik K, McKay IA, Stenn KS and Paus R: A
comprehensive guide for the accurate classification of murine hair
follicles in distinct hair cycle stages. J Invest Dermatol.
117:3–15. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xie L, Zeng X, Hu J and Chen Q:
Characterization of Nestin, a Selective marker for bone marrow
derived mesenchymal stem cells. Stem Cells Int. 2015:7620982015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Amoh Y, Li L, Yang M, Moossa AR, Katsuoka
K, Penman S and Hoffman RM: Nascent blood vessels in the skin arise
from nestin-expressing hair-follicle cells. Proc Natl Acad Sci USA.
101:13291–13295. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Uchugonova A, Cao W, Hoffman RM and Koenig
K: Comparison of label-free and GFP multiphoton imaging of hair
follicle-associated pluripotent (HAP) stem cells in mouse whiskers.
Cell Cycle. 14:3430–3433. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hu W, Lu H, Wang S, Yin W, Liu X, Dong L,
Chiu R, Shen L, Lu WJ and Lan F: Suppression of Nestin reveals a
critical role for p38-EGFR pathway in neural progenitor cell
proliferation. Oncotarget. 7:87052–87063. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Park D, Xiang AP, Mao FF, Zhang L, Di CG,
Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, et al: Nestin is required for
the proper self-renewal of neural stem cells. Stem Cells.
28:2162–2171. 2010. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Sahlgren CM, Mikhailov A, Vaittinen S,
Pallari HM, Kalimo H, Pant HC and Eriksson JE: Cdk5 regulates the
organization of Nestin and its association with p35. Mol Cell Biol.
23:5090–5106. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Isern J, Garcia-Garcia A, Martin AM,
Arranz L, Martín-Pérez D, Torroja C, Sánchez-Cabo F and
Méndez-Ferrer S: The neural crest is a source of mesenchymal stem
cells with specialized hematopoietic stem cell niche function.
Elife. 3:e036962014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kusumbe AP, Ramasamy SK, Itkin T, Mäe MA,
Langen UH, Betsholtz C, Lapidot T and Adams RH: Age-dependent
modulation of vascular niches for haematopoietic stem cells.
Nature. 532:380–384. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ono N, Ono W, Mizoguchi T, Nagasawa T,
Frenette PS and Kronenberg HM: Vasculature-associated cells
expressing nestin in developing bones encompass early cells in the
osteoblast and endothelial lineage. Dev Cell. 29:330–339. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Itkin T, Gur-Cohen S, Spencer JA,
Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I,
Poulos MG, et al: Distinct bone marrow blood vessels differentially
regulate haematopoiesis. Nature. 532:323–328. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Méndez-Ferrer S, Michurina TV, Ferraro F,
Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A,
Enikolopov GN and Frenette PS: Mesenchymal and haematopoietic stem
cells form a unique bone marrow niche. Nature. 466:829–834. 2010.
View Article : Google Scholar : PubMed/NCBI
|