Mechanisms shaping the role of ERK1/2 in cellular senescence (Review)
- Authors:
- Junrong Zou
- Tingting Lei
- Pei Guo
- Jason Yu
- Qichao Xu
- Yunfei Luo
- Rong Ke
- Deqiang Huang
-
Affiliations: Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518110, P.R. China, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA, Department of Pharmacology, The People's Hospital of Xinyu City, Xinyu, Jiangxi 338025, P.R. China, Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA - Published online on: November 29, 2018 https://doi.org/10.3892/mmr.2018.9712
- Pages: 759-770
-
Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cristofalo VJ, Lorenzini A, Allen RG, Torres C and Tresini M: Replicative senescence: A critical review. Mech Ageing Dev. 125:827–848. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zeiser R: Trametinib. Recent Results Cancer Res. 201:241–248. 2014. View Article : Google Scholar : PubMed/NCBI | |
Salama R, Sadaie M, Hoare M and Narita M: Cellular senescence and its effector programs. Genes Dev. 28:99–114. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tominaga K: The emerging role of senescent cells in tissue homeostasis and pathophysiology. Pathobiol Aging Age Relat Dis. 5:277432015. View Article : Google Scholar : PubMed/NCBI | |
Gewirtz DA: Autophagy and senescence in cancer therapy. J Cell Physiol. 229:6–9. 2014.PubMed/NCBI | |
Ohtani N, Mann DJ and Hara E: Cellular senescence: Its role in tumor suppression and aging. Cancer Sci. 100:792–797. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P and Felsher DW: Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA. 104:13028–13033. 2007. View Article : Google Scholar : PubMed/NCBI | |
Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Plotnikov A, Zehorai E, Procaccia S and Seger R: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta. 1813:1619–1633. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan X, Wang YL, Yang XL and Zhang DD: Ethyl acetate extract of Artemisia anomala S. Moore displays potent anti-inflammatory effect. Evid Based Complement Alternat Med. 2014:6813522014. View Article : Google Scholar : PubMed/NCBI | |
Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N and Fagin JA: Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3:520–533. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bell RM, Kunuthur SP, Hendry C, Bruce-Hickman D, Davidson S and Yellon DM: Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: A parallel pathway to protection. Basic Res Cardiol. 108:3312013. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Xu J, Eksioglu EA, Chen X, Zhou J, Fortenbery N, Wei S and Dong J: Icariside II induces apoptosis of melanoma cells through the downregulation of survival pathways. Nutr Cancer. 65:110–117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Desar IM, Gilles R, van Herpen CM, Timmer-Bonte AJ, Cantarini MV, van der Graaf WT and Oyen WJ: (18)F-FLT-PET for response evaluation of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with solid tumors. World J Nucl Med. 11:65–69. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barlin JN, Jelinic P, Olvera N, Bogomolniy F, Bisogna M, Dao F, Barakat RR, Chi DS and Levine DA: Validated gene targets associated with curatively treated advanced serous ovarian carcinoma. Gynecol Oncol. 128:512–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rybakova Y, Akkuratov E, Kulebyakin K, Brodskaya O, Dizhevskaya A and Boldyrev A: Receptor-mediated oxidative stress in murine cerebellar neurons is accompanied by phosphorylation of MAP (ERK 1/2) kinase. Curr Aging Sci. 5:225–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA, Berman AE, Giordano TJ, Prochownik EV, Soengas MS and Nikiforov MA: C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene. 27:6623–6634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Boerner SA, Winkler JD and LoRusso PM: Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta. 1773:1248–1255. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S and Sun P: Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol. 22:3389–3403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M and Lowe SW: Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12:3008–3019. 1998. View Article : Google Scholar : PubMed/NCBI | |
Roskoski R Jr: ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 66:105–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT and Kuriyan J: Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol. 15:452–461. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chuderland D, Konson A and Seger R: Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell. 31:850–861. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsubayashi Y, Fukuda M and Nishida E: Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J Biol Chem. 276:41755–41760. 2001. View Article : Google Scholar : PubMed/NCBI | |
Meister M, Tomasovic A, Banning A and Tikkanen R: Mitogen-activated protein (MAP) kinase scaffolding proteins: A recount. Int J Mol Sci. 14:4854–4884. 2013. View Article : Google Scholar : PubMed/NCBI | |
Good MC, Zalatan JG and Lim WA: Scaffold proteins: Hubs for controlling the flow of cellular information. Science. 332:680–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A and Weber MJ: MP1: A MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science. 281:1668–1671. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI | |
Yang NC and Hu ML: The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 40:813–819. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen KY: Transcription factors and the down-regulation of G1/S boundary genes in human diploid fibroblasts during senescence. Front Biosci. 2:d417–d426. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Segura A, Nehme J and Demaria M: Hallmarks of cellular senescence. Trends Cell Biol. 28:436–453. 2018. View Article : Google Scholar : PubMed/NCBI | |
Passos JF and von Zglinicki T: Mitochondria, telomeres and cell senescence. Exp Gerontol. 40:466–472. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Trimarchi JR, Smith PJ and Keefe DL: Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging cell. 1:40–46. 2002. View Article : Google Scholar : PubMed/NCBI | |
Campisi J: Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11:S27–S31. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Liu WZ, Liu T, Feng X, Yang N and Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boucher MJ, Jean D, Vézina A and Rivard N: Dual role of MEK/ERK signaling in senescence and transformation of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 286:G736–G746. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ravasi S, Citro S, Viviani B, Capra V and Rovati GE: CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respir Res. 7:422006. View Article : Google Scholar : PubMed/NCBI | |
Gong X, He X, Qi L, Zuo H and Xie Z: Stromal cell derived factor-1 acutely promotes neural progenitor cell proliferation in vitro by a mechanism involving the ERK1/2 and PI-3K signal pathways. Cell Biol Int. 30:466–471. 2006. View Article : Google Scholar : PubMed/NCBI | |
Iyengar L, Patkunanathan B, Lynch OT, McAvoy JW, Rasko JE and Lovicu FJ: Aqueous humour- and growth factor-induced lens cell proliferation is dependent on MAPK/ERK1/2 and Akt/PI3-K signalling. Exp Eye Res. 83:667–678. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu T, Nishioka M, Aguirre RL, Win SS and Okada N: Activation of ERK1/2 and cyclin D1 expression in oral tongue squamous cell carcinomas: Relationship between clinicopathological appearances and cell proliferation. Oral Oncol. 42:625–631. 2006. View Article : Google Scholar : PubMed/NCBI | |
De Rosa V, Procaccini C, Cali G, Pirozzi G, Fontana S, Zappacosta S, La Cava A and Matarese G: A key role of leptin in the control of regulatory T cell proliferation. Immunity. 26:241–255. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li M, Feurino LW, Li F, Wang H, Zhai Q, Fisher WE, Chen C and Yao Q: Thymosinalpha1 stimulates cell proliferation by activating ERK1/2, JNK, and increasing cytokine secretion in human pancreatic cancer cells. Cancer Lett. 248:58–67. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li H, Cai X, Fan X, Moquin B, Stoicov C and Houghton J: Fas Ag-FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol. 294:G263–G275. 2008. View Article : Google Scholar : PubMed/NCBI | |
He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC and Dym M: Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 26:266–278. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mancinelli R, Onori P, Gaudio E, DeMorrow S, Franchitto A, Francis H, Glaser S, Carpino G, Venter J, Alvaro D, et al: Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest Liver Physiol. 297:G11–G26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sirianni R, Chimento A, De Luca A, Casaburi I, Rizza P, Onofrio A, Iacopetta D, Puoci F, Andò S, Maggiolini M and Pezzi V: Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol Nutr. 54:833–840. 2010. View Article : Google Scholar | |
Yang Y and Han C: GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell≠≠≠ Bio≠≠. | |
Lee JG and Kay EP: PI 3-kinase/Rac1 and ERK1/2 regulate FGF-2-mediated cell proliferation through phosphorylation of p27 at Ser10 by KIS and at Thr187 by Cdc25A/Cdk2. Invest Ophthalmol Vis Sci. 52:417–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Zhan YQ, Yu M, Ge CH, Li CY, Zhang JH, Wang XH, Ge ZQ and Yang XM: Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway. Cell Signal. 26:2161–2166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K and Govitrapong P: Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience. 275:314–321. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Uchi H, Morino-Koga S, Shi W and Furue M: Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J Dermatol Sci. 75:16–23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y, Lv T, Yao Y, Yuan D and Song Y: PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 359:218–225. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang J, He C, Zhou T, Huang Z, Zhou L and Liu X: NGF increases VEGF expression and promotes cell proliferation via ERK1/2 and AKT signaling in Müller cells. Mol Vis. 22:254–263. 2016.PubMed/NCBI | |
Kim SH, Pei QM, Jiang P, Yang M, Qian XJ and Liu JB: Effect of active vitamin D3 on VEGF-induced ADAM33 expression and proliferation in human airway smooth muscle cells: Implications for asthma treatment. Respir Res. 18:72017. View Article : Google Scholar : PubMed/NCBI | |
Graves LM, Guy HI, Kozlowski P, Huang M, Lazarowski E, Pope RM, Collins MA, Dahlstrand EN, Earp HS III and Evans DR: Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature. 403:328–332. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum LI and Moss T: Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol Cell. 21:629–639. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mendoza MC, Er EE and Blenis J: The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhu L, Kuokkanen S and Pollard JW: Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci USA. 112:E1382–E1391. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hoang B, Benavides A, Shi Y, Yang Y, Frost P, Gera J and Lichtenstein A: The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J Biol Chem. 287:21796–21805. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Chen Z, Erdjument-Bromage H, Tempst P and Pandolfi PP: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 121:179–193. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chambard JC, Lefloch R, Pouysségur J and Lenormand P: ERK implication in cell cycle regulation. Biochim Biophys Acta. 1773:1299–1310. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lavoie JN, L'Allemain G, Brunet A, Muller R and Pouysségur J: Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 271:20608–20616. 1996. View Article : Google Scholar : PubMed/NCBI | |
Seth A, Alvarez E, Gupta S and Davis RJ: A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J Biol Chem. 266:23521–23524. 1991.PubMed/NCBI | |
Daksis JI, Lu RY, Facchini LM, Marhin WW and Penn LJ: Myc induces cyclin D1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene. 9:3635–3645. 1994.PubMed/NCBI | |
Walsh S, Margolis SS and Kornbluth S: Phosphorylation of the cyclin B1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Mol Cancer Res. 1:280–289. 2003.PubMed/NCBI | |
Palmer A, Gavin AC and Nebreda AR: A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17:5037–5047. 1998. View Article : Google Scholar : PubMed/NCBI | |
Shaw PH: The role of p53 in cell cycle regulation. Pathol Res Pract. 192:669–675. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wesierska-Gadek J, Wojciechowski J, Ranftler C and Schmid G: Role of p53 tumor suppressor in ageing: Regulation of transient cell cycle arrest and terminal senescence. J Physiol Pharmacol. 56:15–28. 2005.PubMed/NCBI | |
Lee SY, Choi HC, Choe YJ, Shin SJ, Lee SH and Kim HS: Nutlin-3 induces BCL2A1 expression by activating ELK1 through the mitochondrial p53-ROS-ERK1/2 pathway. Int J Oncol. 45:675–682. 2014. View Article : Google Scholar : PubMed/NCBI | |
Murase S, Kim E, Lin L, Hoffman DA and McKay RD: Loss of signal transducer and activator of transcription 3 (STAT3) signaling during elevated activity causes vulnerability in hippocampal neurons. J Neurosci. 32:15511–15520. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carlos AR, Escandell JM, Kotsantis P, Suwaki N, Bouwman P, Badie S, Folio C, Benitez J, Gomez-Lopez G, Pisano DG, et al: ARF triggers senescence in Brca2-deficient cells by altering the spectrum of p53 transcriptional targets. Nat Commun. 4:26972013. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW and Ingram AJ: ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem. 277:12710–12717. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ashcroft M and Vousden KH: Regulation of p53 stability. Oncogene. 18:7637–7643. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ling Q, Meng C, Chen Q and Xing D: Activated ERK/FOXM1 pathway by low-power laser irradiation inhibits UVB-induced senescence through down-regulating p21 expression. J Cell Physiol. 229:108–116. 2014.PubMed/NCBI | |
Rasola A, Sciacovelli M, Pantic B and Bernardi P: Signal transduction to the permeability transition pore. FEBS Lett. 584:1989–1996. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, Counter CM and Kashatus DF: Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 57:537–551. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Woods D, McMahon M and Bishop JM: Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12:2997–3007. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cammarano MS, Nekrasova T, Noel B and Minden A: Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol. 25:9532–9542. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim-Kaneyama, Nose K and Shibanuma M: Significance of nuclear relocalization of ERK1/2 in reactivation of c-fos transcription and DNA synthesis in senescent fibroblasts. J Biol Chem. 275:20685–20692. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lim IK, Won Hong K, Kwak IH, Yoon G and Park SC: Cytoplasmic retention of p-Erk1/2 and nuclear accumulation of actin proteins during cellular senescence in human diploid fibroblasts. Mech Ageing Dev. 119:113–130. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chaturvedi V, Cesnjaj M, Bacon P, Panella J, Choubey D, Diaz MO and Nickoloff BJ: Role of INK4a/Arf locus-encoded senescent checkpoints activated in normal and psoriatic keratinocytes. Am J Pathol. 162:161–170. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Song MC, Kwak IH, Park TJ and Lim IK: Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J Biol Chem. 278:37497–37510. 2003. View Article : Google Scholar : PubMed/NCBI | |
Todd DE, Densham RM, Molton SA, Balmanno K, Newson C, Weston CR, Garner AP, Scott L and Cook SJ: ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest. Oncogene. 23:3284–3295. 2004. View Article : Google Scholar : PubMed/NCBI | |
Klein LE, Freeze BS, Smith AB III and Horwitz SB: The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle. 4:501–507. 2005. View Article : Google Scholar : PubMed/NCBI | |
Albrecht DS, Clubbs EA, Ferruzzi M and Bomser JA: Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact. 171:89–95. 2008. View Article : Google Scholar : PubMed/NCBI | |
Deschênes-Simard X, Gaumont-Leclerc MF, Bourdeau V, Lessard F, Moiseeva O, Forest V, Igelmann S, Mallette FA, Saba-El-Leil MK, Meloche S, et al: Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes Dev. 27:900–915. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu B, Ferry CH, Blazanin N, Bility MT, Khozoie C, Kang BH, Glick AB, Gonzalez FJ and Peters JM: PPARβ/δ promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. Oncogene. 33:5348–5359. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu Y, Takahashi M, Van Hook K, Kampa-Schittenhelm KM, Sheppard BC, Sears RC, Stork PJ and Lopez CD: N terminus of ASPP2 binds to Ras and enhances Ras/Raf/MEK/ERK activation to promote oncogene-induced senescence. Proc Natl Acad Sci USA. 110:312–317. 2013. View Article : Google Scholar : PubMed/NCBI | |
El Bezawy R, De Cesare M, Pennati M, Deraco M, Gandellini P, Zuco V and Zaffaroni N: Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: Persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism. J Hematol Oncol. 10:192017. View Article : Google Scholar : PubMed/NCBI | |
del Nogal M, Troyano N, Calleros L, Griera M, Rodriguez-Puyol M, Rodriguez-Puyol D and Ruiz-Torres MP: Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells. Int J Biochem Cell Biol. 54:98–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lake D, Correa SA and Müller J: Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 73:4397–4413. 2016. View Article : Google Scholar : PubMed/NCBI | |
Northwood IC, Gonzalez FA, Wartmann M, Raden DL and Davis RJ: Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J Biol Chem. 266:15266–15276. 1991.PubMed/NCBI | |
Sato K, Shin MS, Sakimura A, Zhou Y, Tanaka T, Kawanishi M, Kawasaki Y, Yokoyama S, Koizumi K, Saiki I and Sakurai H: Inverse correlation between Thr-669 and constitutive tyrosine phosphorylation in the asymmetric epidermal growth factor receptor dimer conformation. Cancer Sci. 104:1315–1322. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A and Bernards R: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 483:100–103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zakrzewska M, Haugsten EM, Nadratowska-Wesolowska B, Oppelt A, Hausott B, Jin Y, Otlewski J, Wesche J and Wiedlocha A: ERK-mediated phosphorylation of fibroblast growth factor receptor 1 on Ser777 inhibits signaling. Sci Signal. 6:ra112013. View Article : Google Scholar : PubMed/NCBI | |
Kamioka Y, Yasuda S, Fujita Y, Aoki K and Matsuda M: Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK. J Biol Chem. 285:33540–33548. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lax I, Wong A, Lamothe B, Lee A, Frost A, Hawes J and Schlessinger J: The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol Cell. 10:709–719. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wu YJ, Chen ZJ and Ullrich A: EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2. Biol Chem. 384:1215–1226. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wartmann M, Hofer P, Turowski P, Saltiel AR and Hynes NE: Negative modulation of membrane localization of the Raf-1 protein kinase by hyperphosphorylation. J Biol Chem. 272:3915–3923. 1997. View Article : Google Scholar : PubMed/NCBI | |
Weiss RH, Maga EA and Ramirez A: MEK inhibition augments Raf activity, but has variable effects on mitogenesis, in vascular smooth muscle cells. Am J Physiol. 274:C1521–C1529. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dougherty MK, Müller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP and Morrison DK: Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell. 17:215–224. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hekman M, Fischer A, Wennogle LP, Wang YK, Campbell SL and Rapp UR: Novel C-Raf phosphorylation sites: Serine 296 and 301 participate in Raf regulation. FEBS Lett. 579:464–468. 2005. View Article : Google Scholar : PubMed/NCBI | |
Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V, Qin J, Ruan H, Comb MJ and Tzivion G: Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell. 17:1141–1153. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brummer T, Naegele H, Reth M and Misawa Y: Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene. 22:8823–8834. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ritt DA, Monson DM, Specht SI and Morrison DK: Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol. 30:806–819. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eblen ST, Slack-Davis JK, Tarcsafalvi A, Parsons JT, Weber MJ and Catling AD: Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol. 24:2308–2317. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rossomando AJ, Dent P, Sturgill TW and Marshak DR: Mitogen-activated protein kinase kinase 1 (MKK1) is negatively regulated by threonine phosphorylation. Mol Cell Biol. 14:1594–1602. 1994. View Article : Google Scholar : PubMed/NCBI | |
Canal F, Palygin O, Pankratov Y, Corrêa SA and Müller J: Compartmentalization of the MAPK scaffold protein KSR1 modulates synaptic plasticity in hippocampal neurons. FASEB J. 25:2362–2372. 2011. View Article : Google Scholar : PubMed/NCBI | |
McKay MM, Ritt DA and Morrison DK: Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci USA. 106:11022–11027. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fey D, Croucher DR, Kolch W and Kholodenko BN: Crosstalk and signaling switches in mitogen-activated protein kinase cascades. Front Physiol. 3:3552012. View Article : Google Scholar : PubMed/NCBI | |
Caunt CJ, Finch AR, Sedgley KR and McArdle CA: Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab. 17:276–283. 2006. View Article : Google Scholar : PubMed/NCBI | |
Owens DM and Keyse SM: Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 26:3203–3213. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang CY and Tan TH: DUSPs, to MAP kinases and beyond. Cell Biosci. 2:242012. View Article : Google Scholar : PubMed/NCBI | |
Peti W and Page R: Molecular basis of MAP kinase regulation. Protein Sci. 22:1698–1710. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tanzola MB and Kersh GJ: The dual specificity phosphatase transcriptome of the murine thymus. Mol Immunol. 43:754–762. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hanafusa H, Torii S, Yasunaga T and Nishida E: Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 4:850–858. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T, et al: Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell. 22:668–682. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lito P, Rosen N and Solit DB: Tumor adaptation and resistance to RAF inhibitors. Nat Med. 19:1401–1409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL, Leong HF, Fong CW and Guy GR: Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem. 277:3195–3201. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dent P: Crosstalk between ERK, AKT, and cell survival. Cancer Biol Ther. 15:245–246. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB and Riedl SJ: Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nat Commun. 4:16812013. View Article : Google Scholar : PubMed/NCBI | |
Sinha D, Bannergee S, Schwartz JH, Lieberthal W and Levine JS: Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. J Biol Chem. 279:10962–10972. 2004. View Article : Google Scholar : PubMed/NCBI | |
Trencia A, Perfetti A, Cassese A, Vigliotta G, Miele C, Oriente F, Santopietro S, Giacco F, Condorelli G, Formisano P and Beguinot F: Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol Cell Biol. 23:4511–4521. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aksamitiene E, Kiyatkin A and Kholodenko BN: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem Soc Trans. 40:139–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ussar S and Voss T: MEK1 and MEK2, different regulators of the G1/S transition. J Biol Chem. 279:43861–43869. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Lee SH, Yoon MH and Park BJ: A new p53 target gene, RKIP, is essential for DNA damage-induced cellular senescence and suppression of ERK activation. Neoplasia. 15:727–737. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhou JY, Ge Y, Matherly LH and Wu GS: The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem. 278:41059–41068. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shen WH, Wang J, Wu J, Zhurkin VB and Yin Y: Mitogen-activated protein kinase phosphatase 2: A novel transcription target of p53 in apoptosis. Cancer Res. 66:6033–6039. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ueda K, Arakawa H and Nakamura Y: Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene. 22:5586–5591. 2003. View Article : Google Scholar : PubMed/NCBI | |
El Hasasna H, Athamneh K, Al Samri H, Karuvantevida N, Al Dhaheri Y, Hisaindee S, Ramadan G, Al Tamimi N, AbuQamar S, Eid A and Iratni R: Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation. Sci Rep. 5:130132015. View Article : Google Scholar : PubMed/NCBI | |
Wajapeyee N, Serra RW, Zhu X, Mahalingam M and Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 132:363–374. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ichimura A, Ruike Y, Terasawa K, Shimizu K and Tsujimoto G: MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol. 77:1016–1024. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D and Abdellatif M: MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell. 19:3272–3282. 2008. View Article : Google Scholar : PubMed/NCBI | |
Deschênes-Simard X, Kottakis F, Lessard F, Saint-Germain E, Bourdeau VBardeesy N and Ferbeyre G: Tumor suppressor activity of the ERK/MAPK signaling: Inhibition of cell reprogramming by degradation of specific proteins. Cancer Res. 74:38952014. View Article : Google Scholar | |
Plotnikov A, Flores K, Maik-Rachline G, Zehorai E, Kapri-Pardes E, Berti DA, Hanoch T, Besser MJ and Seger R: The nuclear translocation of ERK1/2 as an anticancer target. Nat Commun. 6:66852015. View Article : Google Scholar : PubMed/NCBI | |
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, et al: Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell. 26:2475–2490. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wainstein E and Seger R: The dynamic subcellular localization of ERK: Mechanisms of translocation and role in various organelles. Curr Opin Cell Biol. 39:15–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Callejas-Valera JL, Guinea-Viniegra J, Ramirez-Castillejo C, Recio JA, Galan-Moya E, Martinez N, Rojas JM, Ramón y Cajal S and Sánchez-Prieto R: E1a gene expression blocks the ERK1/2 signaling pathway by promoting nuclear localization and MKP up-regulation: Implication in v-H-Ras-induced senescence. J Biol Chem. 283:13450–13458. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gaumont-Leclerc MF, Mukhopadhyay UK, Goumard S and Ferbeyre G: PEA-15 is inhibited by adenovirus E1A and plays a role in ERK nuclear export and Ras-induced senescence. J Biol Chem. 279:46802–46809. 2004. View Article : Google Scholar : PubMed/NCBI |