PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)
- Authors:
- Youbang Xie
- Xuefeng Shi
- Kuo Sheng
- Guoxiong Han
- Wenqian Li
- Qiangqiang Zhao
- Baili Jiang
- Jianming Feng
- Jianping Li
- Yuhai Gu
-
Affiliations: Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China, Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China - Published online on: December 3, 2018 https://doi.org/10.3892/mmr.2018.9713
- Pages: 783-791
-
Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
King D, Yeomanson D and Bryant HE: PI3King the lock: Targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 37:245–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peltier J, O'Neill A and Schaffer DV: PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 67:1348–1361. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rafalski VA and Brunet A: Energy metabolism in adult neural stem cell fate. Prog Neurobiol. 93:182–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L, D'Souza S, Wong TP, Taghibiglou C, Lu J, et al: Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron. 38:611–624. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ojeda L, Gao J, Hooten KG, Wang E, Thonhoff JR, Dunn TJ, Gao T and Wu P: Critical role of PI3K/Akt/GSK3β in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS One. 6:e234142011. View Article : Google Scholar : PubMed/NCBI | |
Wyatt LA, Filbin MT and Keirstead HS: PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 522:2741–2755. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fruman DA, Meyers RE and Cantley LC: Phosphoinositide kinases. Annu Rev Biochem. 67:481–507. 1998. View Article : Google Scholar : PubMed/NCBI | |
Courtney KD, Corcoran RB and Engelman JA: The PI3K pathway as drug target in human cancer. J Clin Oncol. 28:1075–1083. 2010. View Article : Google Scholar : PubMed/NCBI | |
Breitkopf SB, Yang X, Begley MJ, Kulkarni M, Chiu YH, Turke AB, Lauriol J, Yuan M, Qi J, Engelman JA, et al: A cross-species study of PI3K protein-protein interactions reveals the direct interaction of P85 and SHP2. Sci Rep. 6:204712016. View Article : Google Scholar : PubMed/NCBI | |
Yuan TL and Cantley LC: PI3K pathway alterations in cancer: Variations on a theme. Oncogene. 27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI | |
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J and Waterfield MD: Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI | |
Amzel LM, Huang CH, Mandelker D, Lengauer C, Gabelli SB and Vogelstein B: Structural comparisons of class I phosphoinositide 3-kinases. Nat Rev Cancer. 8:665–669. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schauder C, Ma LC, Krug RM, Montelione GT and Guan R: Structure of the iSH2 domain of human phosphatidylinositol 3-kinase p85β subunit reveals conformational plasticity in the interhelical turn region. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66:1567–1571. 2010. View Article : Google Scholar : PubMed/NCBI | |
Falasca M and Maffucci T: Role of class II phosphoinositide 3-kinase in cell signalling. Biochem Soc Trans. 35:211–214. 2007. View Article : Google Scholar : PubMed/NCBI | |
Backer JM: The regulation and function of Class III PI3Ks: Novel roles for Vps34. Biochem J. 410:1–17. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bohdanowicz M, Cosío G, Backer JM and Grinstein S: Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. J Cell Biol. 191:999–1012. 2010. View Article : Google Scholar : PubMed/NCBI | |
Staal SP and Hartley JW: Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med. 167:1259–1264. 1988. View Article : Google Scholar : PubMed/NCBI | |
Coffer PJ, Jin J and Woodgett JR: Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 335:1–13. 1998. View Article : Google Scholar : PubMed/NCBI | |
Woodgett JR: Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol. 17:150–157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Andrade MA and Bork P: HEAT repeats in the Huntington's disease protein. Nat Genet. 11:115–116. 1995. View Article : Google Scholar : PubMed/NCBI | |
Jacinto E and Hall MN: Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol. 4:117–126. 2003. View Article : Google Scholar : PubMed/NCBI | |
Peterson RT, Beal PA, Comb MJ and Schreiber SL: FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 275:7416–7423. 2000. View Article : Google Scholar : PubMed/NCBI | |
Du K and Tsichlis PN: Regulation of the Akt kinase by interacting proteins. Oncogene. 24:7401–7409. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carnero A, Blanco-Aparicio C, Renner O, Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 8:187–198. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y and Maehara Y: Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets. 8:27–36. 2008. View Article : Google Scholar : PubMed/NCBI | |
Manning BD and Toker A: AKT/PKB Signaling: Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yip CK, Murata K, Walz T, Sabatini DM and Kang SA: Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell. 38:768–774. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wullschleger S, Loewith R and Hall MN: TOR signaling in growth and metabolism. Cell. 124:471–484. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ward SG and Finan P: Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr Opin Pharmacol. 3:426–434. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yokota J, Chosa N, Sawada S, Okubo N, Takahashi N, Hasegawa T, Kondo H and Ishisaki A: PDGF-induced PI3K-mediated signaling enhances the TGF-β-induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. Int J Mol Med. 33:534–542. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma X and Bai Y: IGF-1 activates the P13K/AKT signaling pathway via upregulation of secretory clusterin. Mol Med Rep. 6:1433–1437. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dudu V, Able RA Jr, Rotari V, Kong Q and Vazquez M: Role of epidermal growth factor-triggered PI3K/Akt signaling in the migration of medulloblastoma-derived cells. Cell Mol Bioeng. 5:413–502. 2012. View Article : Google Scholar | |
Osaki M, Oshimura M and Ito H: PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis. 9:667–676. 2004. View Article : Google Scholar : PubMed/NCBI | |
Geltz NR and Augustine JA: The p85 and p110 subunits of phosphatidylinositol 3-kinase-alpha are substrates, in vitro, for a constitutively associated protein tyrosine kinase in platelets. Blood. 91:930–939. 1998.PubMed/NCBI | |
Kang BH, Shim YJ, Tae YK, Song JA, Choi BK, Park IS and Min BH: Clusterin stimulates the chemotactic migration of macrophages through a pertussis toxin sensitive G-protein-coupled receptor and Gβγ-dependent pathways. Biochem Biophys Res Commun. 445:645–650. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hresko RC and Mueckler M: mTOR RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 280:40406–40416. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tang JM, He QY, Guo RX and Chang XJ: Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 51:181–191. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wishart MJ and Dixon JE: PTEN and myotubularin phosphatases: From 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol. 12:579–585. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stiles BL, Kuralwalla-Martinez C, Guo W, Gregorian C, Wang Y, Tian J, Magnuson MA and Wu H: Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol. 26:2772–2781. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nguyen KT, Tajmir P, Lin CH, Liadis N, Zhu XD, Eweida M, Tolasa-Karaman G, Cai F, Wang R, Kitamura T, et al: Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol. 26:4511–4518. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Fu J, Liu F, Rastogi R, Zhang J and Zhao Y: Small interfering RNA directed against CTMP reduces acute traumatic brain injury in a mouse model by activating Akt. Neurol Res. 36:483–490. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang GL and Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life. 60:591–597. 2008. View Article : Google Scholar : PubMed/NCBI | |
Loor G and Schumacker PT: Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ. 15:686–690. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang BH, Zheng JZ, Leung SW, Roe R and Semenza GL: Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 272:19253–19260. 1997. View Article : Google Scholar : PubMed/NCBI | |
Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B, Selmeczy Z and Németh ZH: HIF-1: A key mediator in hypoxia. Acta Physiol Hung. 96:19–28. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lendahl U, Lee KL, Yang H and Poellinger L: Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet. 10:821–832. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI | |
Peet DJ, Lando D, Whelan DA, Whitelaw ML and Gorman JJ: Oxygen-dependent asparagine hydroxylation. Methods Enzymol. 381:467–487. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kaelin WG: Proline hydroxylation and gene expression. Annu Rev Biochem. 74:115–128. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kondo K and Kaelin WG Jr: The von Hippel-Lindau tumor suppressor gene. Exp Cell Res. 264:117–125. 2001. View Article : Google Scholar : PubMed/NCBI | |
Arjumand W and Sultana S: Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol. 33:9–16. 2012. View Article : Google Scholar : PubMed/NCBI | |
Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, Kujawski M, Kay H, Cress WD, Jove R and Yu H: Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 6:1099–1105. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fisher TS, Etages SD, Hayes L, Crimin K and Li B: Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J Biol Chem. 280:17749–17757. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sandau KB, Fandrey J and Brüne B: Accumulation of HIF-1alpha under the influence of nitric oxide. Blood. 97:1009–1015. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL and Hirota K: Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem. 279:2550–2558. 2004. View Article : Google Scholar : PubMed/NCBI | |
Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M and Park H: Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation. Mol Pharmacol. 74:236–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sogawa K, Numayama-Tsuruta K, Ema M, Abe M, Abe H and Fujii-Kuriyama Y: Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci USA. 95:7368–7373. 1998. View Article : Google Scholar : PubMed/NCBI | |
Brix B, Mesters JR, Pellerin L and Jöhren O: Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J Neurosci. 32:9727–9735. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jung YJ, Isaacs JS, Lee S, Trepel J and Neckers L: IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17:2115–2117. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bárdos JI, Chau NM and Ashcroft M: Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol. 24:2905–2914. 2004. View Article : Google Scholar : PubMed/NCBI | |
Laughner E, Taghavi P, Chiles K, Mahon PC and Semenza GL: HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 21:3995–4004. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW and Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60:1541–1545. 2000.PubMed/NCBI | |
Pagé EL, Robitaille GA, Pouysségur J and Richard DE: Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem. 277:48403–48409. 2002. View Article : Google Scholar : PubMed/NCBI | |
Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A and Skolnik EY: Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17:5374–5387. 1998. View Article : Google Scholar : PubMed/NCBI | |
Karar J and Maity A: Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 8:1994–2001. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, et al: Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14:391–396. 2000.PubMed/NCBI | |
Jiang BH, Zheng JZ, Aoki M and Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA. 97:1749–1753. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T and Vogt PK: Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 12:363–369. 2001.PubMed/NCBI | |
Mazure NM, Chen EY, Laderoute KR and Giaccia AJ: Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood. 90:3322–3331. 1997.PubMed/NCBI | |
Blancher C, Moore JW, Robertson N and Harris AL: Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 61:7349–7355. 2001.PubMed/NCBI | |
Chen EY, Mazure NM, Cooper JA and Giaccia AJ: Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res. 61:2429–2433. 2001.PubMed/NCBI | |
Kietzmann T, Samoylenko A, Roth U and Jungermann K: Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood. 101:907–914. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang TT and Lasky LA: The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J Biol Chem. 278:30125–30135. 2003. View Article : Google Scholar : PubMed/NCBI | |
Arsham AM, Plas DR, Thompson CB and Simon MC: Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 277:15162–15170. 2002. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Tejado M, Alfranca A, Aragonés J, Vara A, Landázuri MO and del Peso L: Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem. 277:13508–13517. 2002. View Article : Google Scholar : PubMed/NCBI | |
Heath DS, Axelrad AA, McLeod DL and Shreeve MM: Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood. 47:777–792. 1976.PubMed/NCBI | |
Fader CM and Colombo MI: Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy. 2:122–125. 2006. View Article : Google Scholar : PubMed/NCBI | |
Swiers G, Patient R and Loose M: Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol. 294:525–540. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wickrema A and Crispino JD: Erythroid and megakaryocytic transformation. Oncogene. 26:6803–6815. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brahimi-Horn C and Pouysségur J: The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer. 93:E73–E80. 2006.PubMed/NCBI | |
Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, et al: Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 10:413–423. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee FS: Genetic causes of erythrocytosis and the oxygen-sensing pathway. Blood Rev. 22:321–332. 2008. View Article : Google Scholar : PubMed/NCBI | |
León-Velarde F, Monge CC, Vidal A, Carcagno M, Criscuolo M and Bozzini CE: Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis. Exp Hematol. 19:257–260. 1991.PubMed/NCBI | |
Oshima K, Ikeda Y, Horinouchi Y, Watanabe H, Hamano H, Kihira Y, Kishi S, Izawa-Ishizawa Y, Miyamoto L, Hirayama T, et al: Iron suppresses erythropoietin expression via oxidative stress-dependent hypoxia-inducible factor-2 alpha inactivation. Lab Invest. 97:555–566. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gupta N and Wish JB: Hypoxia-inducible factor prolyl hydroxylase inhibitors: A potential new treatment for anemia in patients with CKD. Am J Kidney Dis. 69:815–826. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee FS and Percy MJ: The HIF pathway and erythrocytosis. Annu Rev Pathol. 6:165–192. 2011. View Article : Google Scholar : PubMed/NCBI | |
Prchal JT and Sokol L: ‘Benign erythrocytosis’ and other familial and congenital polycythemias. Eur J Haematol. 57:263–268. 1996. View Article : Google Scholar : PubMed/NCBI | |
Patnaik MM and Tefferi A: The complete evaluation of erythrocytosis: Congenital and acquired. Leukemia. 23:834–844. 2009. View Article : Google Scholar : PubMed/NCBI | |
Myllymäki MN, Määttä J, Dimova EY, Izzi V, Väisänen T, Myllyharju J, Koivunen P and Serpi R: Notch downregulation and extramedullary erythrocytosis in hypoxia-inducible factor prolyl 4-hydroxylase 2-deficient mice. Mol Cell Biol. 37(pii): e00529–16. 2017.PubMed/NCBI | |
Tashi T, Scott Reading N, Wuren T, Zhang X, Moore LG, Hu H, Tang F, Shestakova A, Lorenzo F, Burjanivova T, et al: Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. J Mol Med (Berl). 95:665–670. 2017. View Article : Google Scholar : PubMed/NCBI | |
Inkster B, Zai G, Lewis G and Miskowiak KW: GSK3β: A plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders. Transl Psychiatry. 8:2162018. View Article : Google Scholar : PubMed/NCBI | |
van der Vaart A, Meng X, Bowers MS, Batman AM, Aliev F, Farris SP, Hill JS, Green TA, Dick D; COGA Consortium, ; et al: Glycogen synthase kinase 3 beta regulates ethanol consumption and is a risk factor for alcohol dependence. Neuropsychopharmacology. 2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Sopjani M, Millaku L, Nebija D, Emini M, Dermaku-Sopjani M and Rifati-Nixha A: The glycogen synthase kinase-3 in the regulation of ion channels and cellular carriers. Curr Med Chem. Oct 9–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Frame S and Cohen P: GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 359:1–16. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dokken BB, Sloniger JA and Henriksen EJ: Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab. 288:E1188–E1194. 2005. View Article : Google Scholar : PubMed/NCBI | |
Secades P, de Santa-María IS, Merlo A, Suarez C and Chiara MD: In vitro study of normoxic epidermal growth factor receptor-induced hypoxia-inducible factor-1-alpha, vascular endothelial growth factor, and BNIP3 expression in head and neck squamous cell carcinoma cell lines: Implications for anti-epidermal growth factor receptor therapy. Head Neck. 37:1150–1162. 2015. View Article : Google Scholar : PubMed/NCBI | |
Park ST, Kim BR, Park SH, Lee JH, Lee EJ, Lee SH and Rho SB: Suppression of VEGF expression through interruption of the HIF-1α and Akt signaling cascade modulates the anti-angiogenic activity of DAPK in ovarian carcinoma cells. Oncol Rep. 31:1021–1029. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kitamura K, Kangawa K, Matsuo H and Uyeda K: Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. J Biol Chem. 263:16796–16801. 1988.PubMed/NCBI | |
Deprez J, Vertommen D, Alessi DR, Hue L and Rider MH: Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 272:17269–17275. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bertrand L, Alessi DR, Deprez J, Deak M, Viaene E, Rider MH and Hue L: Heart 6-phosphofructo-2-kinase activation by insulin results from Ser-466 and Ser-483 phosphorylation and requires 3-phosphoinositide-dependent kinase-1, but not protein kinase B. J Biol Chem. 274:30927–30933. 1999. View Article : Google Scholar : PubMed/NCBI | |
Depre C, Rider MH, Veitch K and Hue L: Role of fructose 2,6-bisphosphate in the control of heart glycolysis. J Biol Chem. 268:13274–13279. 1993.PubMed/NCBI | |
Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW, Park SW and Kim KS: Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J. 433:225–233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Agani F and Jiang BH: Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets. 13:245–251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moench R, Grimmig T, Kannen V, Tripathi S, Faber M, Moll EM, Chandraker A, Lissner R, Germer CT, Waaga-Gasser AM and Gasser M: Exclusive inhibition of PI3K/Akt/mTOR signaling is not sufficient to prevent PDGF-mediated effects on glycolysis and proliferation in colorectal cancer. Oncotarget. 7:68749–68767. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su J, Gao T, Jiang M, Wu L, Zeng W, Zhao S, Peng C and Chen X: CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma. Oncotarget. 7:64778–64784. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, Zhou HY, Tang NN, Zhang WF, He GJ, Hao B, Feng YD and Zhu H: Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells. World J Gastroenterol. 22:4868–4880. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, et al: Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget. 7:5521–5537. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mulquiney PJ, Bubb WA and Kuchel PW: Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: In vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem J 342 Pt. 3:567–580. 1999. View Article : Google Scholar | |
Benesch R, Benesch RE and Yu CI: Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc Natl Acad Sci USA. 59:526–532. 1968. View Article : Google Scholar : PubMed/NCBI | |
Narita H, Yanagawa S, Sasaki R and Chiba H: Synthesis of 2,3-bisphosphoglycerate synthase in erythroid cells. J Biol Chem. 256:7059–7063. 1981.PubMed/NCBI | |
Lemarchandel V, Joulin V, Valentin C, Rosa R, Galactéros F, Rosa J and Cohen-Solal M: Compound heterozygosity in a complete erythrocyte bisphosphoglycerate mutase deficiency. Blood. 80:2643–2649. 1992.PubMed/NCBI | |
Spangle JM, Roberts TM and Zhao JJ: The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer. 1868:123–131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Okkenhaug K, Graupera M and Vanhaesebroeck B: Targeting PI3K in cancer: Impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6:1090–1105. 2016. View Article : Google Scholar : PubMed/NCBI | |
Villafuerte FC and Corante N: Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High Alt Med Biol. 17:61–69. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hermida MA, Dinesh Kumar J and Leslie NR: GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul. 65:5–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhou H and Tang Q: miR-133: A suppressor of cardiac remodeling? Front Pharmacol. 9:9032018. View Article : Google Scholar : PubMed/NCBI |