1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tang Z: Treatment strategies for cancer.
Chin J Clin Hepatol. 27:337–339. 2011.(In Chinese).
|
3
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Mercer TR and Mattick JS: Structure and
function of long noncoding RNAs in epigenetic regulation. Nat
Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wapinski O and Chang HY: Long noncoding
RNAs and human disease. Trends Cell Biol. 21:354–361. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Rozalski R, Gackowski D, Siomek-Gorecka A,
Banaszkiewicz Z and Olinski R: Urinary measurement of epigenetic
DNA modifications: A non-invasive assessment of the whole-body
epigenetic status in healthy subjects and colorectal cancer
patients. ChemistryOpen. 5:550–553. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shakeri H, Fakhrjou A, Nikanfar A and
Mohaddes-Ardebili SM: Methylation analysis of BRCA1 and APC in
breast cancer and it's relationship to clinicopathological
features. Clin Lab. 62:2333–2337. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Peng D, Zhang H and Sun G: The
relationship between P16 gene promoter methylation and gastric
cancer: A meta-analysis based on Chinese patients. J Cancer Res
Ther. 10 Suppl:S292–S295. 2014. View Article : Google Scholar
|
11
|
Stephen JK, Chen KM, Merritt J, Chitale D,
Divine G and Worsham MJ: Methylation markers for early detection
and differentiation of follicular thyroid cancer subtypes. Cancer
Clin Oncol. 4:1–12. 2015.PubMed/NCBI
|
12
|
Furukawa R, Hachiya T, Ohmomo H, Shiwa Y,
Ono K, Suzuki S, Satoh M, Hitomi J, Sobue K and Shimizu A:
Intraindividual dynamics of transcriptome and genome-wide stability
of DNA methylation. Sci Rep. 6:264242016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu XN, Liu XH, Yu XX, et al: DNA
methylation of tumor suppressor genes and hepatocellular carcinoma.
China Cancer. 26:727–732. 2017.(In Chinese).
|
14
|
Wang F, Ying HQ, He BS, Pan YQ, Deng QW,
Sun HL, Chen J, Liu X and Wang SK: Upregulated lncRNA-UCA1
contributes to progression of hepatocellular carcinoma through
inhibition of miR-216b and activation of FGFR1/ERK signaling
pathway. Oncotarget. 6:7899–7917. 2015.PubMed/NCBI
|
15
|
Zhang Z, Weaver DL, Olsen D, deKay J, Peng
Z, Ashikaga T and Evans MF: Long non-coding RNA chromogenic in situ
hybridisation signal pattern correlation with breast tumour
pathology. J Clin Pathol. 69:76–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
He JH, Han ZP, Liu JM, Zhou JB, Zou MX, Lv
YB, Li YG and Cao MR: Overexpression of long non-coding RNA MEG3
inhibits proliferation of hepatocellular carcinoma Huh7 cells via
negative modulation of miRNA-664. J Cell Biochem. 118:3713–3721.
2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang BP, Lin CS, Wang CJ and Kao SH:
Upregulation of heat shock protein 70 and the differential protein
expression induced by tumor necrosis factor-alpha enhances
migration and inhibits apoptosis of hepatocellular carcinoma cell
HepG2. Int J Med Sci. 14:284–293. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ye Y, Wei Y, Xu Y, Li Y, Wang R, Chen J,
Zhou Y, Fu Z, Chen Y, Wang X, et al: Induced MiR-1249 expression by
aberrant activation of Hedegehog signaling pathway in
hepatocellular carcinoma. Exp Cell Res. 355:9–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang J, Cao L, Wu J and Wang Q: Long
non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326
and promotes tumorigenesis in osteosarcoma. Int J Oncol. 52:77–88.
2018.PubMed/NCBI
|
20
|
Zeng S, Xie X, Xiao YF, Tang B, Hu CJ,
Wang SM, Wu YY, Dong H, Li BS and Yang SM: Long noncoding RNA
LINC00675 enhances phosphorylation of vimentin on Ser83 to suppress
gastric cancer progression. Cancer Lett. 412:179–187. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
He JH, Han ZP, Zou MX, Wang L, Lv YB, Zhou
JB, Cao MR and Li YG: Analyzing the LncRNA, miRNA and mRNA
regulatory network in prostate cancer with bioinformatics software.
J Comput Biol. 25:146–157. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jiang H, Ma R, Zou S, Wang Y, Li Z and Li
W: Reconstruction and analysis of the lncRNA-miRNA-mRNA network
based on competitive endogenous RNA reveal functional lncRNAs in
rheumatoid arthritis. Mol Biosyst. 13:1182–1192. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li DY, Chen WJ, Luo L, Wang YK, Shang J,
Zhang Y, Chen G and Li SK: Prospective lncRNA-miRNA-mRNA regulatory
network of long non-coding RNA LINC00968 in non-small cell lung
cancer A549 cells: A miRNA microarray and bioinformatics
investigation. Int J Mol Med. 40:1895–1906. 2017.PubMed/NCBI
|
24
|
Zhang Y, Li Y, Wang Q, Zhang X, Wang D,
Tang HC, Meng X and Ding X: Identification of an lncRNA-miRNA-mRNA
interaction mechanism in breast cancer based on bioinformatic
analysis. Mol Med Rep. 16:5113–5120. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang J, Fan D, Jian Z, Chen GG and Lai
PB: Cancer specific long noncoding RNAs show differential
expression patterns and competing endogenous RNA potential in
hepatocellular carcinoma. PLoS One. 10:e01410422015. View Article : Google Scholar : PubMed/NCBI
|
26
|
He B, Yin J, Gong S, Gu J, Xiao J, Shi W,
Ding W and He Y: Bioinformatics analysis of key genes and pathways
for hepatocellular carcinoma transformed from cirrhosis. Medicine
(Baltimore). 96:e69382017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kuznetsov VA, Tang Z and Ivshina AV:
Identification of common oncogenic and early developmental pathways
in the ovarian carcinomas controlling by distinct prognostically
significant microRNA subsets. BMC Genomics. 18 Suppl 6:S6922017.
View Article : Google Scholar
|
28
|
Fu Z, Han X, Du J, Han X, Liu W, Shao S
and Liu X: Euphorbia lunulata extract acts on multidrug resistant
gastric cancer cells to inhibit cell proliferation, migration and
invasion, arrest cell cycle progression, and induce apoptosis. J
Ethnopharmacol. 212:8–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
El-Daly SM, Abba ML and Gamal-Eldeen AM:
The role of microRNAs in photodynamic therapy of cancer. Eur J Med
Chem. 142:550–555. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu X, Yamamoto H, Sakon M, Yasui M, Ngan
CY, Fukunaga H, Morita T, Ogawa M, Nagano H, Nakamori S, et al:
Overexpression of CDC25A phosphatase is associated with hypergrowth
activity and poor prognosis of human hepatocellular carcinomas.
Clin Cancer Res. 9:1764–1772. 2003.PubMed/NCBI
|
31
|
Yuan P, Li J, Zhou F, Huang Q, Zhang J,
Guo X, Lyu Z, Zhang H and Xing J: NPAS2 promotes cell survival of
hepatocellular carcinoma by transactivating CDC25A. Cell Death Dis.
8:e27042017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jiang W, Huang H, Ding L, Zhu P, Saiyin H,
Ji G, Zuo J, Han D, Pan Y, Ding D, et al: Regulation of cell cycle
of hepatocellular carcinoma by NF90 through modulation of cyclin E1
mRNA stability. Oncogene. 34:4460–4470. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang X, Hu S, Zhang X, Wang L, Zhang X,
Yan B, Zhao J, Yang A and Zhang R: MicroRNA-7 arrests cell cycle in
G1 phase by directly targeting CCNE1 in human hepatocellular
carcinoma cells. Biochem Biophys Res Commun. 443:1078–1084. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bahrami A, Hesari A, Khazaei M, Hassanian
SM, Ferns GA and Avan A: The therapeutic potential of targeting the
BRAF mutation in patients with colorectal cancer. J Cell Physiol.
233:2162–2169. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Vietsch EE, Graham GT, McCutcheon JN,
Javaid A, Giaccone G, Marshall JL and Wellstein A: Circulating
cell-free DNA mutation patterns in early and late stage colon and
pancreatic cancer. Cancer Genet. 218–219. 39–50. 2017.
|
36
|
Zhang K, Zhou J, Zhu X, Luo M, Xu C, Yu J,
Deng M, Zheng S and Chen Y: Germline mutations of PALB2 gene in a
sequential series of Chinese patients with breast cancer. Breast
Cancer Res Treat. 166:865–873. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hayashi T, Yamashita T, Okada H, Nio K,
Hara Y, Nomura Y, Hayashi T, Asahina Y, Yoshida M, Oishi N, et al:
Sporadic PCDH18 somatic mutations in EpCAM-positive
hepatocellular carcinoma. Cancer Cell Int. 17:942017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jiao J, Niu W, Wang Y, Baggerly K, Ye Y,
Wu X, Davenport D, Almeda JL, Betancourt-Garcia MM, Forse RA, et
al: Prevalence of Aflatoxin-associated TP53R249S mutation in
hepatocellular carcinoma in hispanics in South texas. Cancer Prev
Res (Phila). 11:103–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Riordan JD, Feddersen CR, Tschida BR,
Beckmann PJ, Keng VW, Linden MA, Amin K, Stipp CS, Largaespada DA
and Dupuy AJ: Chronic liver injury alters driver mutation profiles
in hepatocellular carcinoma in mice. Hepatology. 67:924–939. 2018.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Tommasi S and Besaratinia A: A versatile
assay for detection of aberrant DNA methylation in bladder cancer.
Methods Mol Biol. 1655:29–41. 2018. View Article : Google Scholar : PubMed/NCBI
|