1
|
Álvarez-Rodríguez B, Latorre A, Posch C
and Somoza Á: Recent advances in uveal melanoma treatment. Med Res
Rev. 37:1350–1372. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Komatsubara KM, Manson DK and Carvajal RD:
Selumetinib for the treatment of metastatic uveal melanoma: Past
and future perspectives. Future Oncol. 12:1331–1344. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Reichstein D: New concepts in the
molecular understanding of uveal melanoma. Curr Opin Ophthalmol.
28:219–227. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vasalaki M, Fabian ID, Reddy MA, Cohen VM
and Sagoo MS: Ocular oncology: Advances in retinoblastoma, uveal
melanoma and conjunctival melanoma. Br Med Bull. 121:107–119. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaliki S and Shields CL: Uveal melanoma:
Relatively rare but deadly cancer. Eye (Lond). 31:241–257. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Shields CL, Kels JG and Shields JA:
Melanoma of the eye: Revealing hidden secrets, one at a time. Clin
Dermatol. 33:183–196. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Helgadottir H and Höiom V: The genetics of
uveal melanoma: Current insights. Appl Clin Genet. 9:147–155. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Heppt MV, Steeb T, Schlager JG, Rosumeck
S, Dressler C, Ruzicka T, Nast A and Berking C: Immune checkpoint
blockade for unresectable or metastatic uveal melanoma: A
systematic review. Cancer Treat Rev. 60:44–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Blum ES, Yang J, Komatsubara KM and
Carvajal RD: Clinical management of uveal and conjunctival
melanoma. Oncology (Williston Park). 30:29–32, 34-43, 48.
2016.PubMed/NCBI
|
10
|
Krantz BA, Dave N, Komatsubara KM, Marr BP
and Carvajal RD: Uveal melanoma: Epidemiology, etiology, and
treatment of primary disease. Clin Ophthalmol. 11:279–289. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou J, Jin B, Jin Y, Liu Y and Pan J: The
antihelminthic drug niclosamide effectively inhibits the malignant
phenotypes of uveal melanoma in vitro and in vivo. Theranostics.
7:1447–1462. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cheng H, Chua V, Liao C, Purwin TJ, Terai
M, Kageyama K, Davies MA, Sato T and Aplin AE: Co-targeting
HGF/cMET signaling with MEK inhibitors in metastatic uveal
melanoma. Mol Cancer Ther. 16:516–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mahendraraj K, Lau CS, Lee I and
Chamberlain RS: Trends in incidence, survival, and management of
uveal melanoma: A population-based study of 7,516 patients from the
surveillance, epidemiology, and end results database (1973–2012).
Clin Ophthalmol. 10:2113–2119. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Andreoli MT, Mieler WF and Leiderman YI:
Epidemiological trends in uveal melanoma. Br J Ophthalmol.
99:1550–1553. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chandran SS, Somerville RPT, Yang JC,
Sherry RM, Klebanoff CA, Goff SL, Wunderlich JR, Danforth DN, Zlott
D, Paria BC, et al: Treatment of metastatic uveal melanoma with
adoptive transfer of tumour-infiltrating lymphocytes: A
single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol.
18:792–802. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Komatsubara KM and Carvajal RD:
Immunotherapy for the treatment of uveal melanoma: Current status
and emerging therapies. Curr Oncol Rep. 19:452017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Spagnolo F, Picasso V, Spano L, Tanda E,
Venzano C and Queirolo P: Update on metastatic uveal melanoma:
Progress and challenges. BioDrugs. 30:161–172. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
McMahon M, Contreras A and Ruggero D:
Small RNAs with big implications: New insights into H/ACA snoRNA
function and their role in human disease. Wiley Interdiscip Rev
RNA. 6:173–189. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou H, Xu Q, Ni C, Ye S, Xu X, Hu X,
Jiang J, Hong Y, Huang D and Yang L: Prospects of noncoding RNAs in
hepatocellular carcinoma. Biomed Res Int. 2018:65794362018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Koduru SV, Leberfinger AN and Ravnic DJ:
Small non-coding RNA abundance in adrenocortical carcinoma: A
footprint of a rare cancer. J Genomics. 5:99–118. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Siprashvili Z, Webster DE, Johnston D,
Shenoy RM, Ungewickell AJ, Bhaduri A, Flockhart R, Zarnegar BJ, Che
Y, Meschi F, et al: The noncoding RNAs SNORD50A and SNORD50B bind
K-Ras and are recurrently deleted in human cancer. Nat Genet.
48:53–58. 2016. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Xu C, Gu D, Wu M, Yan B, Xu Z,
Wang Y and Liu H: H/ACA box small nucleolar RNA 7A promotes the
self-renewal of human umbilical cord mesenchymal stem cells. Stem
Cells. 35:222–235. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang C, Shi J, Guo Y, Huang W, Huang S,
Ming S, Wu X, Zhang R, Ding J, Zhao W, et al: A snoRNA modulates
mRNA 3′ end processing and regulates the expression of a subset of
mRNAs. Nucleic Acids Res. 45:8647–8660. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou F, Liu Y, Rohde C, Pauli C, Gerloff
D, Köhn M, Misiak D, Bäumer N, Cui C, Göllner S, et al: AML1-ETO
requires enhanced C/D box snoRNA/RNP formation to induce
self-renewal and leukaemia. Nat Cell Biol. 19:844–855. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu B, Ye MH, Lv SG, Wang QX, Wu MJ, Xiao
B, Kang CS and Zhu XG: SNORD47, a box C/D snoRNA, suppresses
tumorigenesis in glioblastoma. Oncotarget. 8:43953–43966.
2017.PubMed/NCBI
|
26
|
Patterson DG, Roberts JT, King VM,
Houserova D, Barnhill EC, Crucello A, Polska CJ, Brantley LW,
Kaufman GC, Nguyen M, et al: Human snoRNA-93 is processed into a
microRNA-like RNA that promotes breast cancer cell invasion. NPJ
Breast Cancer. 3:252017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yoshida K, Toden S, Weng W, Shigeyasu K,
Miyoshi J, Turner J, Nagasaka T, Ma Y, Takayama T, Fujiwara T and
Goel A: SNORA21-an oncogenic small nucleolar RNA, with a prognostic
biomarker potential in human colorectal cancer. EBioMedicine.
22:68–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu L, Ziegelbauer J, Wang R, Wu WW, Shen
RF, Juhl H, Zhang Y and Rosenberg A: Distinct profiles for
mitochondrial t-RNAs and small nucleolar RNAs in locally invasive
and metastatic colorectal cancer. Clin Cancer Res. 22:773–784.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wickham H: ggplot2: Elegant graphics for
data analysis. Springer Publishing Company, Incorporated. 2009.
|
31
|
Xu H, Gong J and Liu H: High expression of
lncRNA PVT1 independently predicts poor overall survival in
patients with primary uveal melanoma. PLoS One. 12:e01896752017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wan Q, Tang J, Han Y and Wang D:
Co-expression modules construction by WGCNA and identify potential
prognostic markers of uveal melanoma. Exp Eye Res. 166:13–20. 2018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Robertson AG, Shih J, Yau C, Gibb EA, Oba
J, Mungall KL, Hess JM, Uzunangelov V, Walter V, Danilova L, et al:
Integrative analysis identifies four molecular and clinical subsets
in uveal melanoma. Cancer Cell. 32:1512018. View Article : Google Scholar
|
34
|
Field MG, Decatur CL, Kurtenbach S, Gezgin
G, van der Velden PA, Jager MJ, Kozak KN and Harbour JW: PRAME as
an independent biomarker for metastasis in uveal melanoma. Clin
Cancer Res. 22:1234–1242. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Field MG, Durante MA, Decatur CL, Tarlan
B, Oelschlager KM, Stone JF, Kuznetsov J, Bowcock AM, Kurtenbach S
and Harbour JW: Epigenetic reprogramming and aberrant expression of
PRAME are associated with increased metastatic risk in Class 1 and
Class 2 uveal melanomas. Oncotarget. 7:59209–59219. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Brown JS, Flitcroft DI, Ying GS, Francis
EL, Schmid GF, Quinn GE and Stone RA: In vivo human choroidal
thickness measurements: Evidence for diurnal fluctuations. Invest
Ophthalmol Vis Sci. 50:5–12. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wicks NL, Chan JW, Najera JA, Ciriello JM
and Oancea E: UVA phototransduction drives early melanin synthesis
in human melanocytes. Curr Biol. 21:1906–1911. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Szuścik I, Romanowska-Dixon B, Jakubowska
B and Orlowska-Heitzman J: Uveal melanoma in patients with ocular
or oculodermal melanocytosis. Klin Oczna. 110:380–383. 2008.(In
Polish). PubMed/NCBI
|
39
|
Kuzirian MS and Paradis S: Emerging themes
in GABAergic synapse development. Prog Neurobiol. 95:68–87. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zieger E, Lacalli TC, Pestarino M,
Schubert M and Candiani S: The origin of dopaminergic systems in
chordate brains: Insights from amphioxus. Int J Dev Biol.
61:749–761. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Vicente-Rodríguez M, Rojo Gonzalez L,
Gramage E, Fernández-Calle R, Chen Y, Pérez-García C, Ferrer-Alcón
M, Uribarri M, Bailey A and Herradón G: Pleiotrophin overexpression
regulates amphetamine-induced reward and striatal dopaminergic
denervation without changing the expression of dopamine D1 and D2
receptors: Implications for neuroinflammation. Eur
Neuropsychopharmacol. 26:1794–1805. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Baig AM: DARK side of amphetamine and
analogues: pharmacology, syndromic manifestation, and management of
amphetamine addiction. ACS Chem Neurosci. 9:2299–2303. 2018.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Ortells MO and Arias HR: Neuronal networks
of nicotine addiction. Int J Biochem Cell Biol. 42:1931–1935. 2010.
View Article : Google Scholar : PubMed/NCBI
|