1
|
Sullivan PF, Neale MC and Kendler KS:
Genetic epidemiology of major depression: Review and meta-analysis.
Am J Psychiatry. 157:1552–1562. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kohen R, Dobra A, Tracy JH and Haugen E:
Transcriptome profiling of human hippocampus dentate gyrus granule
cells in mental illness. Transl Psychiatry. 4:e3662014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lacerda-Pinheiro SF, Pinheiro Junior RF,
Pereira de Lima MA, Lima da Silva CG, Vieira dos Santos Mdo S,
Teixeira Júnior AG, Lima de Oliveira PN, Ribeiro KD, Rolim-Neto ML
and Bianco BA: Are there depression and anxiety genetic markers and
mutations? A systematic review. J Affect Disord. 168:387–398. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Heiman GA, Kamberakis K, Gill R,
Kalachikov S, Pedley TA, Hauser WA and Ottman R: Evaluation of
depression risk in LGI1 mutation carriers. Epilepsia. 51:1685–1690.
2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ergun S and Oztuzcu S: Oncocers:
ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways.
Tumour Biol. 36:3129–3136. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi
Y and Guo J: Long noncoding RNA associated-competing endogenous
RNAs in gastric cancer. Sci Rep. 4:60882014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer
A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J
and Califano A: An extensive microRNA-mediated network of RNA-RNA
interactions regulates established oncogenic pathways in
glioblastoma. Cell. 147:370–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Karreth FA, Tay Y, Perna D, Ala U, Tan SM,
Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, et al:
In vivo identification of tumor-suppressive PTEN ceRNAs in an
oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395.
2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tay Y, Kats L, Salmena L, Weiss D, Tan SM,
Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, et al:
Coding-independent regulation of the tumor suppressor PTEN by
competing endogenous mRNAs. Cell. 147:344–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ma C, Nong K, Zhu H, Wang W, Huang X, Yuan
Z and Ai K: H19 promotes pancreatic cancer metastasis by
derepressing let-7's suppression on its target HMGA2-mediated EMT.
Tumour Biol. 35:9163–9169. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cao C, Zhang T, Zhang D, Xie L, Zou X, Lei
L, Wu D and Liu L: The long non-coding RNA, SNHG6-003, functions as
a competing endogenous RNA to promote the progression of
hepatocellular carcinoma. Oncogene. 36:1112–1122. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhou X, Liu J and Wang W: Construction and
investigation of breast-cancer-specific ceRNA network based on the
mRNA and miRNA expression data. IET Syst Biol. 8:96–103. 2014.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Du Z, Sun T, Hacisuleyman E, Fei T, Wang
X, Brown M, Rinn JL, Lee MG, Chen Y, Kantoff PW and Liu XS:
Integrative analyses reveal a long noncoding RNA-mediated sponge
regulatory network in prostate cancer. Nat Commun. 7:109822016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Jiang H, Ma R, Zou S, Wang Y, Li Z and Li
W: Reconstruction and analysis of the lncRNA-miRNA-mRNA network
based on competitive endogenous RNA reveal functional lncRNAs in
rheumatoid arthritis. Mol Biosyst. 13:1182–1192. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu
X and Zhuang S: HOTAIR functions as a competing endogenous RNA to
regulate PTEN expression by inhibiting miR-19 in cardiac
hypertrophy. Mol Cell Biochem. 432:179–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin R and Turecki G: Noncoding RNAs in
depression. Adv Exp Med Biol. 978:197–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42:D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kanehisa M, Furumichi M, Tanabe M, Sato Y
and Morishima K: KEGG: New perspectives on genomes, pathways,
diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lamb J, Crawford ED, Peck D, Modell JW,
Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et
al: The connectivity map: Using gene-expression signatures to
connect small molecules, genes, and disease. Science.
313:1929–1935. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cai N, Li Y, Chang S, Liang J, Lin C,
Zhang X, Liang L, Hu J, Chan W, Kendler KS, et al: Genetic control
over mtDNA and Its relationship to major depressive disorder. Curr
Biol. 25:3170–3177. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Czibere L, Baur LA, Wittmann A, Gemmeke K,
Steiner A, Weber P, Pütz B, Ahmad N, Bunck M, Graf C, et al:
Profiling trait anxiety: Transcriptome analysis reveals cathepsin B
(Ctsb) as a novel candidate gene for emotionality in mice. PLoS
One. 6:e236042011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kripke DF, Nievergelt CM, Joo E, Shekhtman
T and Kelsoe JR: Circadian polymorphisms associated with affective
disorders. J Circadian Rhythms. 7:22009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kripke DF, Nievergelt CM, Tranah GJ,
Murray SS, Rex KM, Grizas AP, Hahn EK, Lee HJ, Kelsoe JR and Kline
LE: FMR1, circadian genes and depression: Suggestive associations
or false discovery? J Circadian Rhythms. 11:32013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Maes M, Ombelet W, Verkerk R, Bosmans E
and Scharpé S: Effects of pregnancy and delivery on the
availability of plasma tryptophan to the brain: Relationships to
delivery-induced immune activation and early post-partum anxiety
and depression. Psychol Med. 31:847–858. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Murray JM, Sletten TL, Magee M, Gordon C,
Lovato N, Bartlett DJ, Kennaway DJ, Lack LC, Grunstein RR, Lockley
SW, et al: Prevalence of circadian misalignment and its association
with depressive symptoms in delayed sleep phase disorder. Sleep.
402017.doi: 10.1093/sleep/zsw002.
|
32
|
Takaesu Y, Inoue Y, Ono K, Murakoshi A,
Futenma K, Komada Y and Inoue T: Circadian rhythm sleep-wake
disorders as predictors for bipolar disorder in patients with
remitted mood disorders. J Affect Disord. 220:57–61. 2017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee JH, Park SK, Ryoo JH, Oh CM, Mansur
RB, Alfonsi JE, Cha DS, Lee Y, McIntyre RS and Jung JY: The
association between insulin resistance and depression in the Korean
general population. J Affect Disord. 208:553–559. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen WV, Nwakeze CL, Denny CA, O'Keeffe S,
Rieger MA, Mountoufaris G, Kirner A, Dougherty JD, Hen R, Wu Q and
Maniatis T: Pcdhalphac2 is required for axonal tiling and assembly
of serotonergic circuitries in mice. Science. 356:406–411. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Bai M, Zhu X, Zhang Y, Zhang S, Zhang L,
Xue L, Yi J, Yao S and Zhang X: Abnormal hippocampal BDNF and
miR-16 expression is associated with depression-like behaviors
induced by stress during early life. PLoS One. 7:e469212012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Baudry A, Mouillet-Richard S, Schneider B,
Launay JM and Kellermann O: miR-16 targets the serotonin
transporter: A new facet for adaptive responses to antidepressants.
Science. 329:1537–1541. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shao QY, You F, Zhang YH, Hu LL, Liu WJ,
Liu Y, Li J, Wang SD and Song MF: CSF miR-16 expression and its
association with miR-16 and serotonin transporter in the raphe of a
rat model of depression. J Affect Disord. 238:609–614. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Gheysarzadeh A, Sadeghifard N, Afraidooni
L, Pooyan F, Mofid MR, Valadbeigi H, Bakhtiari H and Keikhavani S:
Serum-based microRNA biomarkers for major depression: MiR-16,
miR-135a, and miR-1202. J Res Med Sci. 23:692018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mihailova S, Ivanova-Genova E, Lukanov T,
Stoyanova V, Milanova V and Naumova E: A study of TNF-α, TGF-β,
IL-10, IL-6, and IFN-γ gene polymorphisms in patients with
depression. J Neuroimmunol. 293:123–128. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ostacher MJ, Iosifescu DV, Hay A,
Blumenthal SR, Sklar P and Perlis RH: Pilot investigation of
isradipine in the treatment of bipolar depression motivated by
genome-wide association. Bipolar Disord. 16:199–203. 2014.
View Article : Google Scholar : PubMed/NCBI
|