1
|
Ceulemans AG, Zgavc T, Kooijman R,
Hachimi-Idrissi S, Sarre S and Michotte Y: The dual role of the
neuroinflammatory response after ischemic stroke: modulatory
effects of hypothermia. J Neuroinflammation. 7:742010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gürsoy-Ozdemir Y, Can A and Dalkara T:
Reperfusion-induced oxidative/nitrative injury to neurovascular
unit after focal cerebral ischemia. Stroke. 35:1449–1453. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mendell JT and Olson EN: MicroRNAs in
stress signaling and human disease. Cell. 148:1172–1187. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Ranganathan K and Sivasankar V:
MicroRNAs-Biology and clinical applications. J Oral Maxillofac
Pathol. 18:229–234. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ghibaudi M, Boido M and Vercelli A:
Functional integration of complex miRNA networks in central and
peripheral lesion and axonal regeneration. Prog Neurobiol.
158:69–93. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lau P and Hudson LD: MicroRNAs in neural
cell differentiation. Brain Res. 1338:14–19. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
López-González MJ, Landry M and Favereaux
A: MicroRNA and chronic pain: From mechanisms to therapeutic
potential. Pharmacol Ther. 180:1–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Koutsis G, Siasos G and Spengos K: The
emerging role of microRNA in stroke. Curr Top Med Chem.
13:1573–1588. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu C, Peng Z, Zhang N, Yu L, Han S, Li D
and Li J: Identification of differentially expressed microRNAs and
their PKC-isoform specific gene network prediction during hypoxic
pre-conditioning and focal cerebral ischemia of mice. J Neurochem.
120:830–841. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rink C and Khanna S: MicroRNA in ischemic
stroke etiology and pathology. Physiol Genomics. 43:521–528. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Vinciguerra A, Formisano L, Cerullo P,
Guida N, Cuomo O, Esposito A, Di Renzo G, Annunziato L and
Pignataro G: MicroRNA-103-1 selectively downregulates brain NCX1
and its inhibition by anti-miRNA ameliorates stroke damage and
neurological deficits. Mol Ther. 22:1829–1838. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Dharap A, Bowen K, Place R, Li LC and
Vemuganti R: Transient focal ischemia induces extensive temporal
changes in rat cerebral microRNAome. J Cereb Blood Flow Metab.
29:675–687. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Buller B, Liu X, Wang X, Zhang RL, Zhang
L, Hozeska-Solgot A, Chopp M and Zhang ZG: MicroRNA-21 protects
neurons from ischemic death. FEBS J. 277:4299–4307. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Sepramaniam S, Tan JR, Tan KS, DeSilva DA,
Tavintharan S, Woon FP, Wang CW, Yong FL, Karolina DS, Kaur P, et
al: Circulating microRNAs as biomarkers of acute stroke. Int J Mol
Sci. 15:1418–1432. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu C, Zhao L, Han S, Li J and Li D:
Identification and functional analysis of microRNAs in mice
following focal cerebral ischemia injury. Int J Mol Sci.
16:24302–24318. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ding X, Sun B, Huang J, Xu L, Pan J, Fang
C, Tao Y, Hu S, Li R, Han X, et al: The role of miR-182 in
regulating pineal CLOCK expression after hypoxia-ischemia brain
injury in neonatal rats. Neurosci Lett. 591:75–80. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chang KP and Lai CS: Micro-RNA profiling
as biomarkers in flap ischemia-reperfusion injury. Microsurgery.
32:642–648. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen J, Yang T, Yu H, Sun K, Shi Y, Song
W, Bai Y, Wang X, Lou K, Song Y, et al: A functional variant in the
3′-UTR of angiopoietin-1 might reduce stroke risk by interfering
with the binding efficiency of microRNA 211. Hum Mol Genet.
19:2524–2533. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Duan X, Gan J, Xu F, Li L, Han L, Peng C,
Bao Q, Xiao L and Peng D: RNA sequencing for gene expression
profiles in a rat model of middle cerebral artery occlusion. Biomed
Res Int. 2018:24654812018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bu X, Zhang N, Yang X, Liu Y, Du J, Liang
J, Xu Q and Li J: Proteomic analysis of cPKCβII-interacting
proteins involved in HPC-induced neuroprotection against cerebral
ischemia of mice. J Neurochem. 117:346–356. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Office of Laboratory Animal Welfare.
https://grants.nih.gov/grants/olaw/references/dc96-1.htm
|
22
|
Kozomara A and Griffiths-Jones S: miRBase:
Annotating high confidence microRNAs using deep sequencing data.
Nucleic Acids Res. 42:Database Issue. D68–D73. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mortazavi A, Williams BA, McCue K,
Schaeffer L and Wold B: Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat Methods. 5:621–628. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Betel D, Wilson M, Gabow A, Marks DS and
Sander C: The microRNA.org resource: Targets and expression.
Nucleic Acids Res. 36:Database Issue. D149–D153. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gene Ontology Consortium, Blake JA, Dolan
M, Drabkin H, Hill DP, Li N, Sitnikov D, Bridges S, Burgess S, Buza
T, et al: Gene ontology annotations and resources. Nucleic Acids
Res. 41:Database Issue. D530–D535. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
30
|
Weston MD, Tarang S, Pierce ML, Pyakurel
U, Rocha-Sanchez SMR, McGee J, Walsh EJ and Soukup G: A mouse model
of miR-96, miR-182 and miR-183 misexpression implicates miRNAs in
cochlear cell fate and homeostasis. Sci Rep. 8:35692018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen Y and Song W: Wnt/catenin β1/microRNA
183 predicts recurrence and prognosis of patients with colorectal
cancer. Oncol Lett. 15:4451–4456. 2018.PubMed/NCBI
|
32
|
Dong N, Wang W, Tian J, Xie Z, Lv B, Dai
J, Jiang R, Huang D, Fang S, Tian J, et al: MicroRNA-182 prevents
vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ
signaling. Int J Mol Med. 39:791–798. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu X, Ayub B, Liu Z, Serna VA, Qiang W,
Liu Y, Hernando E, Zabludoff S, Kurita T, Kong B and Wei JJ:
Anti-miR182 reduces ovarian cancer burden, invasion, and
metastasis: An in vivo study in orthotopic xenografts of nude mice.
Mol Cancer Ther. 13:1729–1739. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang J, Wang W, Li J, Wu L, Song M and
Meng Q: miR182 activates the Ras-MEK-ERK pathway in human oral
cavity squamous cell carcinoma by suppressing RASA1 and SPRED1.
Onco Targets Ther. 10:667–679. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Feng S, Yao J, Zhang Z, Zhang Y, Zhang Z,
Liu J, Tan W, Sun C, Chen L and Yu X: miR96 inhibits EMT by
targeting AEG1 in glioblastoma cancer cells. Mol Med Rep.
17:2964–2972. 2018.PubMed/NCBI
|
36
|
Huang X, Lv W, Zhang JH and Lu DL: miR96
functions as a tumor suppressor gene by targeting NUAK1 in
pancreatic cancer. Int J Mol Med. 34:1599–1605. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Knirsh R, Ben-Dror I, Modai S, Shomron N
and Vardimon L: MicroRNA 10b promotes abnormal expression of the
proto-oncogene c-Jun in metastatic breast cancer cells. Oncotarget.
7:59932–59944. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu S, Sun J and Lan Q: TGF-β-induced
miR10a/b expression promotes human glioma cell migration by
targeting PTEN. Mol Med Rep. 8:1741–1746. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhu YL, Wang S, Ding DG, Xu L and Zhu HT:
miR-217 inhibits osteogenic differentiation of rat bone
marrow-derived mesenchymal stem cells by binding to Runx2. Mol Med
Rep. 15:3271–3277. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sun B, Yang M, Li M and Wang F: The
microRNA-217 functions as a tumor suppressor and is frequently
downregulated in human osteosarcoma. Biomed Pharmacother. 71:58–63.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang H, Dong X, Gu X, Qin R, Jia H and Gao
J: The MicroRNA-217 functions as a potential tumor suppressor in
gastric cancer by targeting GPC5. PLoS One. 10:e01254742015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Pehkonen H, von Nandelstadh P, Karhemo PR,
Lepikhova T, Grenman R, Lehti K and Monni O: Liprin-α1 is a
regulator of vimentin intermediate filament network in the cancer
cell adhesion machinery. Sci Rep. 6:244862016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Spangler SA and Hoogenraad CC:
Liprin-alpha proteins: Scaffold molecules for synapse maturation.
Biochem Soc Trans. 35:1278–1282. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Miller KE, DeProto J, Kaufmann N, Patel
BN, Duckworth A and Van Vactor D: Direct observation demonstrates
that Liprin-alpha is required for trafficking of synaptic vesicles.
Curr Biol. 15:684–689. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Shen JC, Unoki M, Ythier D, Duperray A,
Varticovski L, Kumamoto K, Pedeux R and Harris CC: Inhibitor of
growth 4 suppresses cell spreading and cell migration by
interacting with a novel binding partner, liprin alpha1. Cancer
Res. 67:2552–2558. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Christie JD, Wurfel MM, Feng R, O'Keefe
GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ,
Matthay M, et al: Genome wide association identifies PPFIA1 as a
candidate gene for acute lung injury risk following major trauma.
PLoS One. 7:e282682012. View Article : Google Scholar : PubMed/NCBI
|
47
|
González M, Gallardo V, Rodriguez N,
Salomón C, Westermeier F, Guzmán-Gutiérrez E, Abarzúa F, Leiva A,
Casanello P and Sobrevia L: Insulin-stimulated L-arginine transport
requires SLC7A1 gene expression and is associated with human
umbilical vein relaxation. J Cell Physiol. 226:2916–2924. 2011.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Deng WW, Hu Q, Liu ZR, Chen QH, Wang WX,
Zhang HG, Zhang Q, Huang YL and Zhang XK: KDM4B promotes DNA damage
response via STAT3 signaling and is a target of CREB in colorectal
cancer cells. Mol Cell Biochem. 449:81–90. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li H, Yang X, Wang G, Li X, Tao D, Hu J
and Luo X: KDM4B plays an important role in mitochondrial apoptosis
by upregulating HAX1 expression in colorectal cancer. Oncotarget.
7:57866–57877. 2016.PubMed/NCBI
|
50
|
Serva A, Knapp B, Tsai YT, Claas C,
Lisauskas T, Matula P, Harder N, Kaderali L, Rohr K, Erfle H, et
al: miR-17-5p regulates endocytic trafficking through targeting
TBC1D2/Armus. PLoS One. 7:e525552012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Burley DS, Ferdinandy P and Baxter GF:
Cyclic GMP and protein kinase-G in myocardial
ischaemia-reperfusion: Opportunities and obstacles for survival
signaling. Br J Pharmacol. 152:855–869. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nagai-Kusuhara A, Nakamura M, Mukuno H,
Kanamori A, Negi A and Seigel GM: cAMP-responsive element binding
protein mediates a cGMP/protein kinase G-dependent anti-apoptotic
signal induced by nitric oxide in retinal neuro-glial progenitor
cells. Exp Eye Res. 84:152–162. 2007. View Article : Google Scholar : PubMed/NCBI
|