1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yu Y, Walia V and Elble RC: Loss of CLCA4
promotes epithelial-to-mesenchymal transition in breast cancer
cells. PLoS One. 8:e839432013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hynes G, Kubota H and Willison KR:
Antibody characterisation of two distinct conformations of the
chaperonin-containing TCP-1 from mouse testis. FEBS Lett.
358:129–132. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kubota H, Hynes G, Carne A, Ashworth A and
Willison K: Identification of six Tcp-1-related genes encoding
divergent subunits of the TCP-1-containing chaperonin. Curr Biol.
4:89–99. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rommelaere H, Van Troys M, Gao Y, Melki R,
Cowan NJ, Vandekerckhove J and Ampe C: Eukaryotic cytosolic
chaperonin contains t-complex polypeptide 1 and seven related
subunits. Proc Natl Acad Sci USA. 90:11975–11979. 1993. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yam AY, Xia Y, Lin HT, Burlingame A,
Gerstein M and Frydman J: Defining the TRiC/CCT interactome links
chaperonin function to stabilization of newly made proteins with
complex topologies. Nat Struct Mol Biol. 15:1255–1262. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Van Hove I, Verslegers M, Hu TT, Carden M,
Arckens L and Moons L: A proteomic approach to understand
MMP-3-driven developmental processes in the postnatal cerebellum:
Chaperonin CCT6A and MAP kinase as contributing factors. Dev
Neurobiol. 75:1033–1048. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Brackley KI and Grantham J: Activities of
the chaperonin containing TCP-1 (CCT): Implications for cell cycle
progression and cytoskeletal organisation. Cell Stress Chaperones.
14:23–31. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
von Kriegsheim A, Baiocchi D, Birtwistle
M, Sumpton D, Bienvenut W, Morrice N, Yamada K, Lamond A, Kalna G,
Orton R, et al: Cell fate decisions are specified by the dynamic
ERK interactome. Nat Cell Biol. 11:1458–1464. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xiang B, Chatti K, Qiu H, Lakshmi B,
Krasnitz A, Hicks J, Yu M, Miller WT and Muthuswamy SK: Brk is
coamplified with ErbB2 to promote proliferation in breast cancer.
Proc Natl Acad Sci USA. 105:12463–12468. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Roskoski R Jr: ERK1/2 MAP kinases:
Structure, function, and regulation. Pharmacol Res. 66:105–143.
2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tanic N, Brkic G, Dimitrijevic B,
Dedovic-Tanic N, Gefen N, Benharroch D and Gopas J: Identification
of differentially expressed mRNA transcripts in drug-resistant
versus parental human melanoma cell lines. Anticancer Res.
26:2137–2142. 2006.PubMed/NCBI
|
13
|
Myung JK, Afjehi-Sadat L,
Felizardo-Cabatic M, Slavc I and Lubec G: Expressional patterns of
chaperones in ten human tumor cell lines. Proteome Sci. 2:82004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ying Z, Tian H, Li Y, Lian R, Li W, Wu S,
Zhang HZ, Wu J, Liu L, Song J, et al: CCT6A suppresses SMAD2 and
promotes prometastatic TGF-β signaling. J Clin Invest.
127:1725–1740. 2017. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Rhodes DR, Yu J, Shanker K, Deshpande N,
Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM:
ONCOMINE: A cancer microarray database and integrateddata-mining
platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Richardson AL, Wang ZC, De Nicolo A, Lu X,
Brown M, Miron A, Liao X, Iglehart JD, Livingston DM and Ganesan S:
X chromosomal abnormalities in basal-like human breast cancer.
Cancer Cell. 9:121–132. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Curtis C, Shah SP, Chin SF, Turashvili G,
Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et
al: The genomic and transcriptomic architecture of 2,000 breast
tumours reveals novel subgroups. Nature. 486:346–352. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shin S, Kim Y, Chul Oh S, Yu N, Lee ST,
Rak Choi J and Lee KA: Validation and optimization of the Ion
Torrent S5 XL sequencer and Oncomine workflow for BRCA1 and BRCA2
genetic testing. Oncotarget. 8:34858–34866. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Uhlen M, Oksvold P, Fagerberg L, Lundberg
E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S,
et al: Towards a knowledge-based Human Protein Atlas. Nat
Biotechnol. 28:1248–1250. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Győrffy B, Surowiak P, Budczies J and
Lánczky A: Online survival analysis software to assess the
prognostic value of biomarkers using transcriptomic data in
non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Györffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jézéquel P, Campone M, Gouraud W,
Guérin-Charbonnel C, Leux C, Ricolleau G and Campion L:
bc-GenExMiner: An easy-to-use online platform for gene prognostic
analyses in breast cancer. Breast Cancer Res Treat. 131:765–775.
2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jézéquel P, Frénel JS, Campion L,
Guérin-Charbonnel C, Gouraud W, Ricolleau G and Campone M:
bc-GenExMiner 3.0: New mining module computes breast cancer gene
expression correlation analyses. Database (Oxford).
2013:bas0602013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu
J, Liu K and Chen C: Tumor suppressive ZBTB4 inhibits cell growth
by regulating cell cycle progression and apoptosis in Ewing
sarcoma. Biomed Pharmacother. 100:108–115. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Le Doussal V, Tubiana-Hulin M, Friedman S,
Hacene K, Spyratos F and Brunet M: Prognostic value of histologic
grade nuclear components of Scarff-Bloom-Richardson (SBR). An
improved score modification based on a multivariate analysis of
1262 invasive ductal breast carcinomas. Cancer. 64:1914–1921. 1989.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Galea MH, Blamey RW, Elston CW and Ellis
IO: The Nottingham prognostic index in primary breast cancer.
Breast Cancer Res Treat. 22:207–219. 1992. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li C, Du L, Ren Y, Liu X, Jiao Q, Cui D,
Wen M, Wang C, Wei G, Wang Y, et al: SKP2 promotes breast cancer
tumorigenesis and radiation tolerance through PDCD4 ubiquitination.
J Exp Clin Cancer Res. 38:762019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pucci S, Polidoro C, Greggi C, Amati F,
Morini E, Murdocca M, Biancolella M, Orlandi A, Sangiuolo F and
Novelli G: Pro-oncogenic action of LOX-1 and its splice variant
LOX-1Δ4 in breast cancer phenotypes. Cell Death Dis. 10:532019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
O'Toole SA, Selinger CI, Millar EK, Lum T
and Beith JM: Molecular assays in breast cancer pathology.
Pathology. 43:116–127. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Michaut M, Chin SF, Majewski I, Severson
TM, Bismeijer T, de Koning L, Peeters JK, Schouten PC, Rueda OM,
Bosma AJ, et al: Integration of genomic, transcriptomic and
proteomic data identifies two biologically distinctsubtypes of
invasive lobular breast cancer. Sci Rep. 6:185172016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Slamon DJ, Clark GM, Wong SG, Levin WJ,
Ullrich A and McGuire WL: Human breast cancer: Correlation of
relapse and survival with amplification of the HER-2/neu oncogene.
Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI
|