Regulation of histone arginine methylation/demethylation by methylase and demethylase (Review)
- Authors:
- Jing Zhang
- Li Jing
- Menghan Li
- Lingfeng He
- Zhigang Guo
-
Affiliations: Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210097, P.R. China - Published online on: April 1, 2019 https://doi.org/10.3892/mmr.2019.10111
- Pages: 3963-3971
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bedford MT and Richard S: Arginine methylation an emerging regulator of protein function. Mol Cell. 18:263–272. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rothbart SB and Strahl BD: Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 1839:627–643. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boisvert FM, Chénard CA and Richard S: Protein interfaces in signaling regulated by arginine methylation. Sci STKE. 2005:re22005.PubMed/NCBI | |
Yang Y, Lu Y, Espejo A, Wu J, Xu W, Liang S and Bedford MT: TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell. 40:1016–1023. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, Huang B, Zhang Y and Lu J: The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 6:198742016. View Article : Google Scholar : PubMed/NCBI | |
Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST and Sif S: Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 26:3558–3569. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karkhanis V, Wang L, Tae S, Hu YJ, Imbalzano AN and Sif S: Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1. J Biol Chem. 287:29801–29814. 2012. View Article : Google Scholar : PubMed/NCBI | |
Frietze S, Lupien M, Silver PA and Brown M: CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res. 68:301–306. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P and Sif S: Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol. 24:9630–9645. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mosammaparast N and Shi Y: Reversal of histone methylation: Biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem. 79:155–179. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bedford MT and Clarke SG: Protein arginine methylation in mammals: Who, what, and why. Mol Cell. 33:1–13. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gary JD and Clarke S: RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol. 61:65–131. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bedford MT: Arginine methylation at a glance. J Cell Sci. 120:4243–4246. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Bedford MT: PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep. 3:268–273. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yu MC: The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int. 2011:163827–163836. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishioka K and Reinberg D: Methods and tips for the purification of human histone methyltransferases. Methods. 31:49–58. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI and Matera AG: Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol. 178:733–740. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Mundade R, Lange KC and Lu T: Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle. 13:32–41. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsai WC, Gayatri S, Reineke LC, Sbardella G, Bedford MT and Lloyd RE: Arginine Demethylation of G3BP1 Promotes Stress Granule Assembly. J Biol Chem. 291:22671–22685. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA and Lee MS: Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev. 12:679–691. 1998. View Article : Google Scholar : PubMed/NCBI | |
Goulet I, Gauvin G, Boisvenue S and Côté J: Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem. 282:33009–33021. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zou L, Zhang H, Du C, Liu X, Zhu S, Zhang W, Li Z, Gao C, Zhao X, Mei M, et al: Correlation of SRSF1 and PRMT1 expression with clinical status of pediatric acute lymphoblastic leukemia. J Hematol Oncol. 5:422012. View Article : Google Scholar : PubMed/NCBI | |
Elakoum R, Gauchotte G, Oussalah A, Wissler MP, Clément-Duchêne C, Vignaud JM, Guéant JL and Namour F: CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie. 97:210–218. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shia WJ, Okumura AJ, Yan M, Sarkeshik A, Lo MC, Matsuura S, Komeno Y, Zhao X, Nimer SD, Yates JR III, et al: PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood. 119:4953–4962. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mathioudaki K, Papadokostopoulou A, Scorilas A, Xynopoulos D, Agnanti N and Talieri M: The PRMT1 gene expression pattern in colon cancer. Br J Cancer. 99:2094–2099. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mathioudaki K, Scorilas A, Ardavanis A, Lymberi P, Tsiambas E, Devetzi M, Apostolaki A and Talieri M: Clinical evaluation of PRMT1 gene expression in breast cancer. Tumour Biol. 32:575–582. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mathioudakis N and Salvatori R: Adult-onset growth hormone deficiency: Causes, complications and treatment options. Curr Opin Endocrinol Diabetes Obes. 15:352–358. 2008. View Article : Google Scholar : PubMed/NCBI | |
Papadokostopoulou A, Mathioudaki K, Scorilas A, Xynopoulos D, Ardavanis A, Kouroumalis E and Talieri M: Colon cancer and protein arginine methyltransferase 1 gene expression. Anticancer Res. 29:1361–1366. 2009.PubMed/NCBI | |
Zhong J, Cao RX, Zu XY, Hong T, Yang J, Liu L, Xiao XH, Ding WJ, Zhao Q, Liu JH, et al: Identification and characterization of novel spliced variants of PRMT2 in breast carcinoma. FEBS J. 279:316–335. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhong J, Cao RX, Hong T, Yang J, Zu XY, Xiao XH, Liu JH and Wen GB: Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene. 487:1–9. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Iwai M, Kawai T, Arakawa A, Ito T, Sakurai-Yageta M, Ito A, Goto A, Saito M, Kasumi F, et al: Aberrant expression of tumor suppressors CADM1 and 4.1B in invasive lesions of primary breast cancer. Breast Cancer. 19:242–252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singh V, Miranda TB, Jiang W, Frankel A, Roemer ME, Robb VA, Gutmann DH, Herschman HR, Clarke S and Newsham IF: DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene. 23:7761–7771. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hong H, Kao C, Jeng MH, Eble JN, Koch MO, Gardner TA, Zhang S, Li L, Pan CX, Hu Z, et al: Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer. 101:83–89. 2004. View Article : Google Scholar : PubMed/NCBI | |
Majumder S, Liu Y, Ford OH III, Mohler JL and Whang YE: Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate. 66:1292–1301. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim YR, Lee BK, Park RY, Nguyen NT, Bae JA, Kwon DD and Jung C: Differential CARM1 expression in prostate and colorectal cancers. BMC Cancer. 10:1972010. View Article : Google Scholar : PubMed/NCBI | |
Habashy HO, Rakha EA, Ellis IO and Powe DG: The oestrogen receptor coactivator CARM1 has an oncogenic effect and is associated with poor prognosis in breast cancer. Breast Cancer Res Treat. 140:307–316. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Pal S and Sif S: Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol. 28:6262–6277. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bao X, Zhao S, Liu T, Liu Y, Liu Y and Yang X: Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem. 61:206–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
Powers MA, Fay MM, Factor RE, Welm AL and Ullman KS: Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res. 71:5579–5587. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshimatsu M, Toyokawa G, Hayami S, Unoki M, Tsunoda T, Field HI, Kelly JD, Neal DE, Maehara Y, Ponder BA, et al: Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer. 128:562–573. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thomassen M, Tan Q and Kruse TA: Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat. 113:239–249. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, Hou P, Gao Y, Zhao L, Wang G, et al: PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res. 74:5656–5667. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baldwin RM, Haghandish N, Daneshmand M, Amin S, Paris G, Falls TJ, Bell JC, Islam S and Côté J: Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget. 6:3013–3032. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Bedford MT: Protein arginine methyltransferases and cancer. Nat Rev Cancer. 13:37–50. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P and Surani MA: Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 24:2772–2777. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pawlak MR, Scherer CA, Chen J, Roshon MJ and Ruley HE: Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol. 20:4859–4869. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Chen T, Hébert J, Li E and Richard S: A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol. 29:2982–2996. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blanc RS and Richard S: Arginine Methylation: The Coming of Age. Mol Cell. 65:8–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811–816. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee DY, Teyssier C, Strahl BD and Stallcup MR: Role of protein methylation in regulation of transcription. Endocr Rev. 26:147–170. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wysocka J, Allis CD and Coonrod S: Histone arginine methylation and its dynamic regulation. Front Biosci. 11:344–355. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ng SS, Yue WW, Oppermann U and Klose RJ: Dynamic protein methylation in chromatin biology. Cell Mol Life Sci. 66:407–422. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Chen Y, Zhao Y and Bruick RK: JMJD6 is a histone arginine demethylase. Science. 318:444–447. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li S, Ali S, Duan X, Liu S, Du J, Liu C, Dai H, Zhou M, Zhou L, Yang L, et al: JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells. Cell Rep. 23:389–403. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hino S, Kohrogi K and Nakao M: Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci. 107:1187–1192. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen HJ, Xu WQ and Lan F: Histone lysine demethylases in mammalian embryonic development. Exp Mol Med. 49:e3252017. View Article : Google Scholar : PubMed/NCBI | |
Vossenaar ER, Zendman AJ, van Venrooij WJ and Pruijn GJ: PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. BioEssays. 25:1106–1118. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nakashima K, Hagiwara T and Yamada M: Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem. 277:49562–49568. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hagiwara T, Nakashima K, Hirano H, Senshu T and Yamada M: Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem Biophys Res Commun. 290:979–983. 2002. View Article : Google Scholar : PubMed/NCBI | |
Holbert MA and Marmorstein R: Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol. 15:673–680. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, et al: Histone deimination antagonizes arginine methylation. Cell. 118:545–553. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, et al: Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 306:279–283. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA and Henson PM: A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 405:85–90. 2000. View Article : Google Scholar : PubMed/NCBI | |
Poulard C, Rambaud J, Hussein N, Corbo L and Le Romancer M: JMJD6 regulates ERα methylation on arginine. PLoS One. 9:e879822014. View Article : Google Scholar : PubMed/NCBI | |
Poulard C, Rambaud J, Lavergne E, Jacquemetton J, Renoir JM, Trédan O, Chabaud S, Treilleux I, Corbo L and Le Romancer M: Role of JMJD6 in Breast Tumourigenesis. PLoS One. 10:e01261812015. View Article : Google Scholar : PubMed/NCBI | |
Lawrence P, Conderino JS and Rieder E: Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: Role of Jumonji C-domain containing protein 6 in RHA demethylation. Virology. 452-453:1–11. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao WW, Xiao RQ, Peng BL, Xu HT, Shen HF, Huang MF, Shi TT, Yi J, Zhang WJ, Wu XN, et al: Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation. Proc Natl Acad Sci USA. 112:3327–3336. 2015. View Article : Google Scholar | |
Tsai WC, Reineke LC, Jain A, Jung SY and Lloyd RE: Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1. J Biol Chem. 292:18886–18896. 2017. View Article : Google Scholar : PubMed/NCBI | |
Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM and Noh YS: Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell. 16:2601–2613. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Hu Y and Zhou DX: Epigenetic gene regulation by plant Jumonji group of histone demethylase. Biochim Biophys Acta. 1809:421–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B and Noh YS: Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell. 22:736–748. 2012. View Article : Google Scholar : PubMed/NCBI | |
Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, Nielsen ML, Schmitz C, Butler DS, Yates JR III, et al: Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science. 325:90–93. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heim A, Grimm C, Müller U, Häußler S, Mackeen MM, Merl J, Hauck SM, Kessler BM, Schofield CJ, Wolf A, et al: Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Res. 42:7833–7850. 2014. View Article : Google Scholar : PubMed/NCBI | |
Böttger A, Islam MS, Chowdhury R, Schofield CJ and Wolf A: The oxygenase Jmjd6--a case study in conflicting assignments. Biochem J. 468:191–202. 2015. View Article : Google Scholar : PubMed/NCBI | |
Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A and Schofield CJ: Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun. 7:119742016. View Article : Google Scholar : PubMed/NCBI | |
Markolovic S, Wilkins SE and Schofield CJ: Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases. J Biol Chem. 290:20712–20722. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hopkinson RJ, Walport LJ, Münzel M, Rose NR, Smart TJ, Kawamura A, Claridge TD and Schofield CJ: Is JmjC oxygenase catalysis limited to demethylation? Angew Chem Int Ed Engl. 52:7709–7713. 2013. View Article : Google Scholar : PubMed/NCBI | |
Williams ST, Walport LJ, Hopkinson RJ, Madden SK, Chowdhury R, Schofield CJ and Kawamura A: Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics. 9:1596–1603. 2014. View Article : Google Scholar : PubMed/NCBI | |
Klose RJ, Kallin EM and Zhang Y: JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 7:715–727. 2006. View Article : Google Scholar : PubMed/NCBI | |
Klose RJ, Gardner KE, Liang G, Erdjument-Bromage H, Tempst P and Zhang Y: Demethylation of histone H3K36 and H3K9 by Rph1: A vestige of an H3K9 methylation system in Saccharomyces cerevisiae? Mol Cell Biol. 27:3951–3961. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Kim D, Choi SA, Kim CR, Oh SK, Pyo KE, Kim J, Lee SH, Yoon JB, Zhang Y, et al: KDM3A histone demethylase functions as an essential factor for activation of JAK2-STAT3 signaling pathway. Proc Natl Acad Sci USA. 115:11766–11771. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tsukada Y and Zhang Y: Purification of histone demethylases from HeLa cells. Methods. 40:318–326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ and Nielsen ML: Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal. 9:rs92016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yin X, Yang H and Xu Y: Histone demethylase LSD2 acts as an E3 ubiquitin ligase and inhibits cancer cell growth through promoting proteasomal degradation of OGT. Mol Cell. 58:47–59. 2015. View Article : Google Scholar : PubMed/NCBI |