1
|
Zou R, Xu G, Liu XC, Han M, Jiang JJ,
Huang Q, He Y and Yao Y: PPARgamma agonists inhibit TGF-beta-PKA
signaling in glomerulosclerosis. Acta Pharmacol Sin. 31:43–50.
2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nagata M: Podocyte injury and its
consequences. Kidney Int. 89:1221–1230. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Taneda S, Honda K, Ohno M, Uchida K, Nitta
K and Oda H: Podocyte and endothelial injury in focal segmental
glomerulosclerosis: An ultrastructural analysis. Virchows Arch.
467:449–458. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang C, Blough E, Arvapalli R, Dai X,
Triest WE, Leidy JW, Masannat Y and Wu M: Acetaminophen attenuates
glomerulosclerosis in obese Zucker rats via reactive oxygen
species/p38MAPK signaling pathways. Free Radic Biol Med. 81:47–57.
2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qian Y, Feldman E, Pennathur S, Kretzler M
and Brosius FC III: From fibrosis to sclerosis: Mechanisms of
glomerulosclerosis in diabetic nephropathy. Diabetes. 57:1439–1445.
2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou TB and Qin YH: The signaling pathways
of LMX1B and its role in glomerulosclerosis. J Recept Signal
Transduct Res. 32:285–289. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hodgin JB, Bitzer M, Wickman L, Afshinnia
F, Wang SQ, O'Connor C, Yang Y, Meadowbrooke C, Chowdhury M,
Kikuchi M, et al: Glomerular aging and focal global
glomerulosclerosis: A podometric perspective. J Am Soc Nephrol.
26:3162–3178. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Arauz J, Rivera-Espinoza Y, Shibayama M,
Favari L, Flores-Beltrán RE and Muriel P: Nicotinic acid prevents
experimental liver fibrosis by attenuating the prooxidant process.
Int Immunopharmacol. 28:244–251. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu L, Lin W, Zhang Q, Cao W and Liu Z:
TGF-β induces miR-30d down-regulation and podocyte injury through
Smad2/3 and HDAC3-associated transcriptional repression. J Mol Med
(Berl). 94:291–300. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nabavi SF, Russo GL, Daglia M and Nabavi
SM: Role of quercetin as an alternative for obesity treatment: You
are what you eat! Food Chem. 179:305–310. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ma JQ, Li Z, Xie WR, Liu CM and Liu SS:
Quercetin protects mouse liver against CCl4-induced
inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int
Immunopharmacol. 28:531–539. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pan HC, Jiang Q, Yu Y, Mei JP, Cui YK and
Zhao WJ: Quercetin promotes cell apoptosis and inhibits the
expression of MMP-9 and fibronectin via the AKT and ERK signalling
pathways in human glioma cells. Neurochem Int. 80:60–71. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Baruah MM, Khandwekar AP and Sharma N:
Quercetin modulates Wnt signaling components in prostate cancer
cell line by inhibiting cell viability, migration, and metastases.
Tumour Biol. 37:14025–14034. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Peng H, Liu Y, Wang J, Zhao X and Wang X:
Effect of quercetin on the expression of TGF-beta1 in human
embryonic lung fibroblasts activated by the silicotic alveolar
macrophages. Wei Sheng Yan Jiu. 42:99–102. 2013.(In Chinese).
PubMed/NCBI
|
15
|
Steru L, Chermat R, Thierry B and Simon P:
The tail suspension test: A new method for screening
antidepressants in mice. Psychopharmacology (Berl). 85:367–370.
1985. View Article : Google Scholar : PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bertani T, Rocchi G, Sacchi G, Mecca G and
Remuzzi G: Adriamycin-induced glomerulosclerosis in the rat. Am J
Kidney Dis. 7:12–19. 1986. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ
and Huang WF: apoE expression in glomerulus and correlation with
glomerulosclerosis induced by adriamycin in rats. Ren Fail.
33:348–354. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu S, Jia Z, Zhou L, Liu Y, Ling H, Zhou
SF, Zhang A, Du Y, Guan G and Yang T: Nitro-oleic acid protects
against adriamycin-induced nephropathy in mice. Am J Physiol Renal
Physiol. 305:F1533–F1541. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang YU, Zhou N, Wang H, Wang S and He J:
Effect of Shenkang granules on the progression of chronic renal
failure in 5/6 nephrectomized rats. Exp Ther Med. 9:2034–2042.
2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ
and Huang WF: All-trans retinoic acid regulates the expression of
apolipoprotein E in rats with glomerulosclerosis induced by
Adriamycin. Exp Mol Pathol. 90:287–294. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ding Y and Choi ME: Regulation of
autophagy by TGF-β: Emerging role in kidney fibrosis. Semin
Nephrol. 34:62–71. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wan YG, Che XY, Sun W, Huang YR, Meng XJ,
Chen HL, Shi XM, Tu Y, Wu W and Liu YL: Low-dose of multi-glycoside
of Tripterygium wilfordii Hook. f., a natural regulator of
TGF-β1/Smad signaling activity improves adriamycin-induced
glomerulosclerosis in vivo. J Ethnopharmacol. 151:1079–1089. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fukuda A, Minakawa A, Sato Y, Iwakiri T,
Iwatsubo S, Komatsu H, Kikuchi M, Kitamura K, Wiggins RC and
Fujimoto S: Urinary podocyte and TGF-β1 mRNA as markers for disease
activity and progression in anti-glomerular basement membrane
nephritis. Nephrol Dial Transplant. 32:1818–1830. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yoon JJ, Lee YJ, Namgung S, Han BH, Choi
ES, Kang DG and Lee HS: Samchuleum attenuates diabetic renal injury
through the regulation of TGF-β/Smad signaling in human renal
mesangial cells. Mol Med Rep. 17:3099–3108. 2018.PubMed/NCBI
|
26
|
Kim YS, Xu ZG, Reddy MA, Li SL, Lanting L,
Sharma K, Adler SG and Natarajan R: Novel interactions between
TGF-{beta}1 actions and the 12/15-lipoxygenase pathway in mesangial
cells. J Am Soc Nephrol. 16:352–362. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
McKnight AJ, Savage DA, Patterson CC,
Sadlier D and Maxwell AP: Resequencing of genes for transforming
growth factor beta1 (TGFB1) type 1 and 2 receptors (TGFBR1,
TGFBR2), and association analysis of variants with diabetic
nephropathy. BMC Med Genet. 8:52007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Das F, Ghosh-Choudhury N, Bera A, Dey N,
Abboud HE, Kasinath BS and Choudhury GG: Transforming growth factor
β integrates Smad 3 to mechanistic target of rapamycin complexes to
arrest deptor abundance for glomerular mesangial cell hypertrophy.
J Biol Chem. 288:7756–7768. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang L, Liu C, Meng XM, Huang C, Xu F and
Li J: Smad2 protects against TGF-β1/Smad3-mediated collagen
synthesis in human hepatic stellate cells during hepatic fibrosis.
Mol Cell Biochem. 400:17–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang H, Li G, Wu JJ, Wang L, Uhler M and
Simeone DM: Protein kinase A modulates transforming growth factor-β
signaling through a direct interaction with Smad4 protein. J Biol
Chem. 288:8737–8749. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schiffer M, Bitzer M, Roberts IS, Kopp JB,
ten Dijke P, Mundel P and Böttinger EP: Apoptosis in podocytes
induced by TGF-beta and Smad7. J Clin Invest. 108:807–816. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Larsson SO, Hedner U and Nilsson IM: On
fibrinolytic split products in serum and urine in uraemia. Scand J
Urol Nephrol. 5:234–242. 1971. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guasch G, Schober M, Pasolli HA, Conn EB,
Polak L and Fuchs E: Loss of TGFbeta signaling destabilizes
homeostasis and promotes squamous cell carcinomas in stratified
epithelia. Cancer Cell. 12:313–327. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Heldin CH, Vanlandewijck M and Moustakas
A: Regulation of EMT by TGFβ in cancer. FEBS Lett. 586:1959–1970.
2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
David CJ, Huang YH, Chen M, Su J, Zou Y,
Bardeesy N, Iacobuzio-Donahue CA and Massagué J: TGF-β tumor
suppression through a lethal EMT. Cell. 164:1015–1030. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sriram S, Gibson DJ, Robinson P, Pi L,
Tuli S, Lewin AS and Schultz G: Assessment of anti-scarring
therapies in ex vivo organ cultured rabbit corneas. Exp Eye Res.
125:173–182. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tomcik M, Palumbo-Zerr K, Zerr P, Avouac
J, Dees C, Sumova B, Distler A, Beyer C, Cerezo LA, Becvar R, et
al: S100A4 amplifies TGF-β-induced fibroblast activation in
systemic sclerosis. Ann Rheum Dis. 74:1748–1755. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yan Q, Luo H, Wang B, Sui W, Zou G, Chen H
and Zou H: Correlation between PKB/Akt, GSK-3β expression and
tubular epithelial-mesenchymal transition in renal allografts with
chronic active antibody-mediated rejection. Exp Ther Med.
13:2217–2224. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Toraldo G, Bhasin S, Bakhit M, Guo W,
Serra C, Safer JD, Bhawan J and Jasuja R: Topical androgen
antagonism promotes cutaneous wound healing without systemic
androgen deprivation by blocking β-catenin nuclear translocation
and cross-talk with TGF-β signaling in keratinocytes. Wound Repair
Regen. 20:61–73. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wagner MC, Rhodes G, Wang E, Pruthi V,
Arif E, Saleem MA, Wean SE, Garg P, Verma R, Holzman LB, et al:
Ischemic injury to kidney induces glomerular podocyte effacement
and dissociation of slit diaphragm proteins Neph1 and ZO-1. J Biol
Chem. 283:35579–35589. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jia J, Ding G, Zhu J, Chen C, Liang W,
Franki N and Singhal PC: Angiotensin II infusion induces nephrin
expression changes and podocyte apoptosis. Am J Nephrol.
28:500–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Teixeira Vde P, Blattner SM, Li M, Anders
HJ, Cohen CD, Edenhofer I, Calvaresi N, Merkle M, Rastaldi MP and
Kretzler M: Functional consequences of integrin-linked kinase
activation in podocyte damage. Kidney Int. 67:514–523. 2005.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Pérez-Pastén R, Martinez-Galero E and
Chamorro-Cevallos G: Quercetin and naringenin reduce abnormal
development of mouse embryos produced by hydroxyurea. J Pharm
Pharmacol. 62:1003–1009. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Vanhees K, de Bock L, Godschalk RW, van
Schooten FJ and van Waalwijk van Doorn-Khosrovani SB: Prenatal
exposure to flavonoids: Implication for cancer risk. Toxicol Sci.
120:59–67. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Heinz SA, Henson DA, Austin MD, Jin F and
Nieman DC: Quercetin supplementation and upper respiratory tract
infection: A randomized community clinical trial. Pharmacol Res.
62:237–242. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Jin F, Nieman DC, Shanely RA, Knab AM,
Austin MD and Sha W: The variable plasma quercetin response to
12-week quercetin supplementation in humans. Eur J Clin Nutr.
64:692–697. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Nieman DC, Henson DA, Davis JM, Dumke CL,
Gross SJ, Jenkins DP, Murphy EA, Carmichael MD, Quindry JC,
McAnulty SR, et al: Quercetin ingestion does not alter cytokine
changes in athletes competing in the western states endurance run.
J Interferon Cytokine Res. 27:1003–1011. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Scholten SD and Sergeev IN: Long-term
quercetin supplementation reduces lipid peroxidation but does not
improve performance in endurance runners. Open Access J Sports Med.
4:53–61. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shanely RA, Knab AM, Nieman DC, Jin F,
McAnulty SR and Landram MJ: Quercetin supplementation does not
alter antioxidant status in humans. Free Radic Res. 44:224–231.
2010. View Article : Google Scholar : PubMed/NCBI
|