1
|
Nestor-Bergmann A, Goddard G and Woolner
S: Force and the spindle: Mechanical cues in mitotic spindle
orientation. Semin Cell Dev Biol. 34:133–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lesman A, Notbohm J, Tirrell DA and
Ravichandran G: Contractile forces regulate cell division in
three-dimensional environments. J Cell Biol. 205:155–162. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Harada S and Rodan GA: Control of
osteoblast function and regulation of bone mass. Nature.
423:349–355. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Robling AG, Castillo AB and Turner CH:
Biomechanical and molecular regulation of bone remodeling. Annu Rev
Biomed Eng. 8:455–498. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bin G, Cuifang W, Bo Z, Jing W, Jin J,
Xiaoyi T, Cong C, Yonggang C, Liping A, Jinglin M and Yayi X: Fluid
shear stress inhibits TNF-α-induced osteoblast apoptosis via ERK5
signaling pathway. Biochem Biophys Res Commun. 466:117–123. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Caiazzo M, Okawa Y, Ranga A, Piersigilli
A, Tabata Y and Lutolf MP: Defined three-dimensional
microenvironments boost induction of pluripotency. Nat Mater.
15:344–352. 2016. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Altman GH, Horan RL, Martin I, Farhadi J,
Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G and Kaplan DL:
Cell differentiation by mechanical stress. ASEB J. 16:270–272.
2002.
|
8
|
Estes BT, Gimble JM and Guilak F:
Mechanical signals as regulators of stem cell fate. Curr Top Dev
Biol. 60:91–126. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pillai AK, Andring B, Patel A, Trimmer C
and Kalva SP: Portal hypertension: A review of portosystemic
collateral pathways and endovascular interventions. Clin Radiol.
70:1047–1059. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Berzigotti A, Seijo S, Reverter E and
Bosch J: Assessing portal hypertension in liver diseases. Expert
Rev Gastroenterol Hepatol. 7:141–155. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takuma Y, Nouso K, Morimoto Y, Tomokuni J,
Sahara A, Takabatake H, Matsueda K and Yamamoto H: Portal
hypertension in patients with liver cirrhosis: Diagnostic accuracy
of spleen stiffness. Radiology. 279:609–619. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bloom S, Kemp W and Lubel J: Portal
hypertension: Pathophysiology, diagnosis and management. Intern Med
J. 45:16–26. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ksiazyk J, Lyszkowska M and Kierkus J:
Energy metabolism in portal hypertension in children. Nutrition.
12:469–474. 1996. View Article : Google Scholar : PubMed/NCBI
|
14
|
Arias N, Méndez M, Arias J and Arias JL:
Brain metabolism and spatial memory are affected by portal
hypertension. Metab Brain Dis. 27:183–191. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mohan P and Venkataraman J: Minimal
hepatic encephalopathy in noncirrhotic portal hypertension. Eur J
Gastroenterol Hepatol. 23:194–195. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vogels BA, van Steynen B, Maas MA, Jörning
GG and Chamuleau RA: The effects of ammonia and portal-systemic
shunting on brain metabolism, neurotransmission and intracranial
hypertension in hyperammonaemia-induced encephalopathy. J Hepatol.
26:387–395. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Perisic M, Ilic-Mostic T, Stojkovic M,
Culafic D and Sarenac R: Doppler hemodynamic study in portal
hypertension and hepatic encephalopathy. Hepatogastroenterology.
52:156–160. 2005.PubMed/NCBI
|
18
|
Petersen MC, Vatner DF and Shulman GI:
Regulation of hepatic glucose metabolism in health and disease. Nat
Rev Endocrinol. 13:572–587. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Boden G, Cheung P, Stein TP, Kresge K and
Mozzoli M: FFA cause hepatic insulin resistance by inhibiting
insulin suppression of glycogenolysis. Am J Physiol Endocrinol
Metab. 283:E12–E19. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang WM, Jeong HJ, Park SY and Lee W:
Saturated fatty acid-induced miR-195 impairs insulin signaling and
glycogen metabolism in HepG2 cells. FEBS Lett. 588:3939–3946. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kir S, Beddow SA, Samuel VT, Miller P,
Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA and
Mangelsdorf DJ: FGF19 as a postprandial, insulin-independent
activator of hepatic protein and glycogen synthesis. Science.
331:1621–1624. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ,
Ding L, Chen Q, Li YH, Wang JJ, Kang YM and Zhu GQ: Irisin inhibits
hepatic gluconeogenesis and increases glycogen synthesis via the
PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci
(Lond). 129:839–850. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Prats C, Graham TE and Shearer J: The
dynamic life of the glycogen granule. J Biol Chem. 293:7089–7098.
2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Watanabe S, Nagashio Y, Asaumi H, Nomiyama
Y, Taguchi M, Tashiro M, Kihara Y, Nakamura H and Otsuki M:
Pressure activates rat pancreatic stellate cells. Am J Physiol
Gastrointest Liver Physiol. 287:G1175–G1181. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wu HJ, Zhang ZQ, Yu B, Liu S, Qin KR and
Zhu L: Pressure activates Src-dependent FAK-Akt and ERK1/2
signaling pathways in rat hepatic stellate cells. Cell Physiol
Biochem. 26:273–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fang W, Guo J, Cao Y, Wang S, Pang C, Li
M, Dou L, Man Y, Huang X, Shen T and Li J: MicroRNA-20a-5p
contributes to hepatic glycogen synthesis through targeting p63 to
regulate p53 and PTEN expression. J Cell Mol Med. 20:1467–1480.
2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Isogai T, Park JS and Danuser G: Cell
forces meet cell metabolism. Nat Cell Biol. 19:591–593. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Dziegala M, Kobak KA, Kasztura M, Bania J,
Josiak K, Banasiak W, Ponikowski P and Jankowska EA: Iron depletion
affects genes encoding mitochondrial electron transport chain and
genes of non-oxidative metabolism, pyruvate kinase and lactate
dehydrogenase, in primary human cardiac myocytes cultured upon
mechanical stretch. Cells. 7(pii): E1752018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yi SH, Zhang Y, Tang D and Zhu L:
Mechanical force and tensile strain activated hepatic stellate
cells and inhibited retinol metabolism. Biotechnol Lett.
37:1141–1152. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Denault AY, Beaubien-Souligny W,
Elmi-Sarabi M, Eljaiek R, El-Hamamsy I, Lamarche Y, Chronopoulos A,
Lambert J, Bouchard J and Desjardins G: Clinical significance of
portal hypertension diagnosed with bedside ultrasound after cardiac
surgery. Anesth Analg. 124:1109–1115. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Johnson TJ, Quigley EM, Adrian TE, Jin G
and Rikkers LF: Glucagon, stress, and portal hypertension. Plasma
glucagon levels and portal hypertension in relation to anesthesia
and surgical stress. Dig Dis Sci. 40:1816–1823. 1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mohamed JS, Lopez MA and Boriek AM:
Mechanical stretch up-regulates microRNA-26a and induces human
airway smooth muscle hypertrophy by suppressing glycogen synthase
kinase-3β. J Biol Chem. 285:29336–29347. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ørtenblad N, Westerblad H and Nielsen J:
Muscle glycogen stores and fatigue. J Physiol. 591:4405–4413. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Roach PJ, Depaoli-Roach AA, Hurley TD and
Tagliabracci VS: Glycogen and its metabolism: Some new developments
and old themes. Biochem J. 441:763–787. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nakano K, Takeshita S, Kawasaki N,
Miyanaga W, Okamatsu Y, Dohi M and Nakagawa T: AJS1669, a novel
small-molecule muscle glycogen synthase activator, improves glucose
metabolism and reduces body fat mass in mice. Int J Mol Med.
39:841–850. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Han C, Wei S, He F, Liu D, Wan H, Liu H,
Li L, Xu H, Du X and Xu F: The regulation of lipid deposition by
insulin in goose liver cells is mediated by the PI3K-AKT-mTOR
signaling pathway. PLoS One. 10:e00987592015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nocito L, Kleckner AS, Yoo EJ, Jones Iv
AR, Liesa M and Corkey BE: The extracellular redox state modulates
mitochondrial function, gluconeogenesis, and glycogen synthesis in
murine hepatocytes. PLoS One. 10:e01228182015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chang YS, Tsai CT, Huangfu CA, Huang WY,
Lei HY, Lin CF, Su IJ, Chang WT, Wu PH, Chen YT, et al: ACSL3 and
GSK-3β are essential for lipid upregulation induced by endoplasmic
reticulum stress in liver cells. J Cell Biochem. 112:881–893. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Venna VR, Benashski SE, Chauhan A and
McCullough LD: Inhibition of glycogen synthase kinase-3β enhances
cognitive recovery after stroke: The role of TAK1. Learn Mem.
22:336–343. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hientz K, Mohr A, Bhakta-Guha D and
Efferth T: The role of p53 in cancer drug resistance and targeted
chemotherapy. Oncotarget. 8:8921–8946. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jiang P, Du W, Wang X, Mancuso A, Gao X,
Wu M and Yang X: p53 regulates biosynthesis through direct
inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol.
13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu J, Zhang C, Hu W and Feng Z: Tumor
suppressor p53 and its mutants in cancer metabolism. Cancer Lett.
356:197–203. 2015. View Article : Google Scholar : PubMed/NCBI
|