1
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z,
Zhang L, Ji X, Liu W, Huang B, Liu B, et al: Breast cancer
development and progression: Risk factors, cancer stem cells,
signaling pathways, genomics, and molecular pathogenesis. Genes
Dis. 5:77–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rahman S and Zayed H: Breast cancer in the
GCC countries: A focus on BRCA1/2 and non-BRCA1/2 genes. Gene.
668:73–76. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bai X, Ni J, Beretov J, Graham P and Li Y:
Cancer stem cell in breast cancer therapeutic resistance. Cancer
Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Assefa B, Glatzel G and Buchmann C:
Ethnomedicinal uses of Hagenia abyssinica (Bruce) J.F. Gmel.
Among rural communities of Ethiopia. J Ethnobiol Ethnomed.
6:202010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bouabdelli F, Djelloul A, Kaid-Omar Z,
Semmoud A and Addou A: Antimicrobial activity of 22 plants used in
urolithiasis medicine in western Algeria. Asian Pac J Trop Dis. 2
(Suppl 1):S530–S535. 2012. View Article : Google Scholar
|
6
|
Azzi R, Djaziri R and Lahfa F:
Ethnopharmacological survey of medicinal plants used in the
traditional treatment of diabetes mellitus in the North Western and
South Western Algeria. J Med Plants Res. 6:2041–2050. 2012.
|
7
|
Benarba B, Belabid L, Righi K, Bekkar AA,
Elouissi M, Khaldi A and Hammimed A: Ethnobotanical study of
medicinal plants used by traditional healers in Mascara (North West
of Algeria). J Ethnopharmacol. 175:626–637. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Benarba B: Medicinal plants used by
traditional healers from South-West Algeria: An ethnobotanical
study. J Intercult Ethnopharmacol. 5:320–330. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Benarba B: Use of medicinal plants by
breast cancer patients in Algeria. EXCLI J. 14:1164–1166.
2015.PubMed/NCBI
|
10
|
Benarba B, Ambroise G, Aoues A, Meddah B
and Vazquez A: Aristolochia longa aqueous extract triggers
the mitochondrial pathway of apoptosis in BL41 Burkitt's lymphoma
cells. Int J Green Pharm. 2012:45–49. 2012. View Article : Google Scholar
|
11
|
Benarba B, Pandiella A and Elmallah A:
Anticancer activity, phytochemical screening and acute toxicity
evaluation of an aqueous extract of Aristolochia longa L.
Int J Pharm Phytopharmacol Res. 6:20–26. 2016. View Article : Google Scholar
|
12
|
Sallam AA, Hitotsuyanagi Y, Mansour ES,
Ahmed AF, Gedara S, Fukaya H and Takeya K: Cucurbitacins from
Bryonia cretica. Phytochem Lett. 3:117–121. 2010. View Article : Google Scholar
|
13
|
Nakashima S, Matsuda H, Kurume A, Oda Y,
Nakamura S, Yamashita M and Yoshikawa M: Cucurbitacin E as a new
inhibitor of cofilin phosphorylation in human leukemia U937 cells.
Bioorg Med Chem Lett. 20:2994–2997. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Matsuda H, Nakashima S, Abdel-Halim OB,
Morikawa T and Yoshikawa M: Cucurbitane-type triterpenes with
anti-proliferative effects on U937 cells from an egyptian natural
medicine, Bryonia cretica: Structures of new triterpene glycosides,
bryoniaosides A and B. Chem Pharm Bull (Tokyo). 58:747–751. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Chekroun E, Bechiri A, Azzi R, Adida H,
Benariba N and Djaziri R: Antidiabetic activity of two aqueous
extracts of two cucurbitaceae: Citrullus colocynthis and
Bryonia dioica. Phytothérapie. 15:57–66. 2017. View Article : Google Scholar
|
16
|
Dhouioui M, Boulila A, Jemli M, Schiets F,
Casabianca H and Zina MS: Fatty acids composition and antibacterial
activity of Aristolochia longa L. and Bryonia dioïca
Jacq. Growing wild in tunisia. J Oleo Sci. 65:655–661. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chekroun E, Benariba N, Adida H, Bechiri
A, Azzi R and Djaziri R: Antioxidant activity and phytochemical
screening of two Cucurbitaceae: Citrullus colocynthis fruits
and Bryonia dioica roots. Asian Pac J Trop Dis. 5:632–637.
2015. View Article : Google Scholar
|
18
|
Benarba B, Meddah B and Aoues A:
Bryonia dioica aqueous extract induces apoptosis through
mitochondrial intrinsic pathway in BL41 Burkitt's lymphoma cells. J
Ethnopharmacol. 141:510–516. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Díaz-Rodríguez E, Sanz E and Pandiella A:
Antitumoral effect of Ocoxin, a natural compound-containing
nutritional supplement, in small cell lung cancer. Int J Oncol.
53:113–123. 2018.PubMed/NCBI
|
20
|
Díaz-Rodríguez E, El-Mallah AM, Sanz E and
Pandiella A: Antitumoral effect of Ocoxin in hepatocellular
carcinoma. Oncol Lett. 14:1950–1958. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sathish S, Janakiraman N and Johnson M:
Phytochemical analysis of vitex altissima L. using UV–VIS, FTIR and
GC-MS. Int J Pharm Sci Drug Res. 4:56–62. 2012.
|
22
|
Rodríguez-Gonzalo E, García-Gómez D and
Carabias-Martínez R: Development and validation of a method for the
detection and confirmation of biomarkers of exposure in human urine
by means of restricted access material-liquid chromatography-tandem
mass spectrometry. J Chromatogr A. 1217:40–48. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Roy S, Banerjee B and Vedasiromoni JR:
Cytotoxic and apoptogenic effect of Swietenia mahagoni (L.) Jacq.
leaf extract in human leukemic cell lines U937, K562 and HL-60.
Environ Toxicol Pharm. 37:234–247. 2014. View Article : Google Scholar
|
24
|
Buranrat B, Mairuae N and Kanchanarach W:
Cytotoxic and antimigratory effects of Cratoxy formosum extract
against HepG2 liver cancer cells. Biomed Rep. 6:441–448. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Benarba B, Meddah B and Tir-Touil A:
Response of bone resorption markers to Aristolochia longa
intaked by Algerian breast cancer postmenopausal women. Adv
Pharmacol Sci. 2014:1–4. 2014. View Article : Google Scholar
|
26
|
Sun X, Ma X, Li Q, Yang Y, Xu X, Sun J, Yu
M, Cao K, Yang L, Yang G, et al: Anticancer effects of fisetin on
mammary carcinoma cells via regulation of the PI3K/Akt/mTOR
pathway: In vitro and in vivo studies. Int J Mol Med.
42:811–820. 2018.PubMed/NCBI
|
27
|
Piao XM, Gao F, Zhu JX, Wang LJ, Zhao X,
Li X, Sheng MM and Zhang Y: Cucurbitacin B inhibits tumor
angiogenesis by triggering the mitochondrial signaling pathway in
endothelial cells. Int J Mol Med. 42:1018–1025. 2018.PubMed/NCBI
|
28
|
Sahpazidou D, Geromichalos GD, Stagos D,
Apostolou A, Haroutounian SA, Tsatsakis AM, Tzanakakis GN, Hayes AW
and Kouretas D: Anticarcinogenic activity of polyphenolic extracts
from grape stems against breast, colon, renal and thyroid cancer
cells. Toxicol Lett. 230:218–224. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
de Lima AP, Pereira Fde C, Vilanova-Costa
CA, Soares JR, Pereira LC, Porto HK, Pavanin LA, Dos Santos WB and
Silveira-Lacerda Ede P: Induction of cell cycle arrest and
apoptosis by ruthenium complex
cis-(dichloro)tetramineruthenium(III) chloride in human lung
carcinoma cells A549. Biol Trace Elem Res. 147:8–15. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Koo BC, Kim DH, Kim IR, Kim GC, Kwak HH
and Park BS: A natural product, chios gum mastic, induces the death
of HL-60 cells via apoptosis and cell cycle arrest. Int J Oral
Biol. 36:13–21. 2011.
|
31
|
Hostanska K, Nisslein T, Freudenstein J,
Reichling J and Saller R: Cimicifuga racemosa extract
inhibits proliferation of estrogen receptor-positive and negative
human breast carcinoma cell lines by induction of apoptosis. Breast
Cancer Res Treat. 84:151–160. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chakravarti B, Maurya R, Siddiqui JA, Bid
HK, Rajendran SM, Yadav PP and Konwar R: In vitro anti-breast
cancer activity of ethanolic extract of Wrightia tomentosa: Role of
pro-apoptotic effects of oleanolic acid and urosolic acid. J
Ethnopharmacol. 142:72–79. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ferreira AK, de-Sá-Júnior PL, Pasqualoto
KF, de Azevedo RA, Câmara DA, Costa AS, Figueiredo CR, Matsuo AL,
Massaoka MH, Auada AV, et al: Cytotoxic effects of dillapiole on
MDA-MB-231 cells involve the induction of apoptosis through the
mitochondrial pathway by inducing an oxidative stress while
altering the cytoskeleton network. Biochimie. 99:195–207. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ye B, Li J, Li Z, Yang J, Niu T and Wang
S: Anti-tumor activity and relative mechanism of ethanolic extract
of Marsdenia tenacissima (Asclepiadaceae) against human hematologic
neoplasm in vitro and in vivo. J Ethnopharmacol. 153:258–267. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee DH, Park KI, Park HS, Kang SR,
Nagappan A, Kim JA, Kim EH, Lee WS, Hah YS, Chung HJ, et al:
Flavonoids isolated from Korea citrus aurantium L. induce G2/M
phase arrest and apoptosis in human gastric cancer AGS cells. J
Evid Based Complementary Altern Med. 2012:1–11. 2012. View Article : Google Scholar
|
36
|
Zhang Q, Zhao XH and Wang ZJ: Flavones and
flavonols exert cytotoxic effects on a human oesophageal
adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing
apoptosis. Food Chem Toxicol. 46:2042–2053. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gómez-Alonso S, Collins VJ, Vauzour D,
Rodríguez-Mateos A, Corona G and Spencer JPE: Inhibition of colon
adenocarcinoma cell proliferation by flavonols is linked to a G2/M
cell cycle block and reduction in cyclin D1 expression. Food Chem.
130:493–500. 2012. View Article : Google Scholar
|
38
|
Youssef Moustafa AM, Khodair AI and Saleh
MA: Isolation, structural elucidation of flavonoid constituents
from Leptadenia pyrotechnica and evaluation of their toxicity and
antitumor activity. Pharm Biol. 47:539–552. 2009. View Article : Google Scholar
|
39
|
Sisa M, Bonnet SL, Ferreira D and Van der
Westhuizen JH: Photochemistry of flavonoids. Molecules.
15:5196–5245. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tsimogiannis D, Samiotaki M, Panayotou G
and Oreopoulou V: Characterization of flavonoid subgroups and
hydroxy substitution by HPLC-MS/MS. Molecules. 12:593–606. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Lee HN, Shin SA, Choo GS, Kim HJ, Park YS,
Kim BS, Kim SK, Cho SD, Nam JS, Choi CS, et al: Anti-inflammatory
effect of quercetin and galangin in LPS-stimulated RAW264.7
macrophages and DNCB-induced atopic dermatitis animal models. Int J
Mol Med. 41:888–898. 2018.PubMed/NCBI
|
42
|
Romagnolo DF and Selmin OI: Flavonoids and
cancer prevention: A review of the evidence. J Nutr Gerontol
Geriatr. 31:206–238. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Barros L, Dueñas M, Ferreira ICFR,
Carvalho AM and Santos-Buelga C: Use of HPLC-DAD-ESI/MS to profile
phenolic compounds in edible wild greens from Portugal. Food Chem.
127:169–173. 2011. View Article : Google Scholar
|
44
|
Marfe G, Tafani M, Indelicato M,
Sinibaldi-Salimei P, Reali V, Pucci B, Fini M and Russo MA:
Kaempferol induces apoptosis in two different cell lines via Akt
inactivation, Bax and SIRT3 activation, and mitochondrial
dysfunction. J Cell Biochem. 106:643–650. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Leung HW, Lin CJ, Hour MJ, Yang WH, Wang
MY and Lee HZ: Kaempferol induces apoptosis in human lung non-small
carcinoma cells accompanied by an induction of antioxidant enzymes.
Food Chem Toxicol. 45:2005–2013. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Brusselmans K, Vrolix R, Verhoeven G and
Swinnen JV: Induction of cancer cell apoptosis by flavonoids is
associated with their ability to inhibit fatty acid synthase
activity. J Biol Chem. 280:5636–5645. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kang JW, Kim JH, Song K, Kim SH, Yoon JH
and Kim KS: Kaempferol and quercetin, components of Ginkgo biloba
extract (EGb 761), induce caspase-3-dependent apoptosis in oral
cavity cancer cells. Phytother Res. 24 (Suppl 1):S77–S82. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Devi KP, Rajavel T, Habtemariam S, Nabavi
SF and Nabavi SM: Molecular mechanisms underlying anticancer
effects of myricetin. Life Sci. 142:19–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kim ME, Ha TK, Yoon JH and Lee JS:
Myricetin induces cell death of human colon cancer cells via
BAX/BCL2-dependent pathway. Anticancer Res. 34:701–706.
2014.PubMed/NCBI
|
50
|
Xu Y, Xie Q, Wu S, Yi D, Yu Y, Liu S, Li S
and Li Z: Myricetin induces apoptosis via endoplasmic reticulum
stress and DNA double-strand breaks in human ovarian cancer cells.
Mol Med Rep. 13:2094–2100. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zheng AW, Chen YQ, Zhao LQ and Feng JG:
Myricetin induces apoptosis and enhances chemosensitivity in
ovarian cancer cells. Oncol Lett. 13:4974–4978. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Morales P and Haza AI: Selective apoptotic
effects of piceatannol and myricetin in human cancer cells. J Appl
Toxicol. 32:986–993. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang S, Wang L, Liu H, Zhao G and Ming L:
Enhancement of recombinant myricetin on the radiosensitivity of
lung cancer A549 and H1299 cells. Diagn Pathol. 9:682014.
View Article : Google Scholar : PubMed/NCBI
|
54
|
de Oliveira Júnior RG, Christiane Adrielly
AF, da Silva Almeida JRG, Grougnet R, Thiéry V and Picot L:
Sensitization of tumor cells to chemotherapy by natural products: A
systematic review of preclinical data and molecular mechanisms.
Fitoterapia. 129:383–400. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Lu J, Papp LV, Fang J, Rodriguez-Nieto S,
Zhivotovsky B and Holmgren A: Inhibition of mammalian thioredoxin
reductase by some flavonoids: Implications for myricetin and
quercetin anticancer activity. Cancer Res. 66:4410–4418. 2006.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Maggioni D, Nicolini G, Rigolio R, Biffi
L, Pignataro L, Gaini R and Gravello W: Myricetin and naringenin
inhibit human squamous cell carcinoma proliferation and migration
in vitro. Nutr Cancer. 66:1257–1267. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Deepa M, Sureshkumar T, Satheeshkumar PK
and Priya S: Antioxidant rich Morus alba leaf extract induces
apoptosis in human colon and breast cancer cells by the
downregulation of nitric oxide produced by inducible nitric oxide
synthase. Nutr Cancer. 65:305–310. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Jayakumar JK, Nirmala P, Praveen Kumar BA
and Kumar AP: Evaluation of protective effect of myricetin, a
bioflavonoid in dimethyl benzanthracene-induced breast cancer in
female Wistar rats. South Asian J Cancer. 3:107–111. 2014.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Semwal DK, Semwal RB, Combrinck S and
Viljoen A: Myricetin: A dietary molecule with diverse biological
activities. Nutrients. 8:902016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Martínez-Pérez C, Ward C, Turnbull AK,
Mullen P, Cook G, Meehan J, Jarman EJ, Thomson PI, Campbell CJ,
McPhail D, et al: Antitumour activity of the novel flavonoid
Oncamex in preclinical breast cancer models. Br J Cancer.
114:905–916. 2016. View Article : Google Scholar : PubMed/NCBI
|