1
|
Cato EP, Salmon CW and Moore WEC:
Fusobacterium prausnitzii (Hauduroy et al.) moore and
holdeman: emended description and designation of neotype strain.
Int J Syst Bacteriol. 24:225–229. 1974. View Article : Google Scholar
|
2
|
Duncan SH, Hold GL, Harmsen HJM, Stewart
CS and Flint HJ: Growth requirements and fermentation products of
Fusobacterium prausnitzii, and a proposal to reclassify it
as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J
Syst Evol Microbiol. 52:2141–2146. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lopez-Siles M, Khan TM, Duncan SH, Harmsen
HJM, Garcia-Gil LJ and Flint HJ: Cultured representatives of two
major phylogroups of human colonic Faecalibacterium
prausnitzii can utilize pectin, uronic acids, and host-derived
substrates for growth. Appl Environ Microbiol. 78:420–428. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lopez-Siles M, Martinez-Medina M, Busquets
D, Sabat-Mir M, Duncan SH, Flint HJ, Aldeguer X and Garcia-Gil LJ:
Mucosa-associated Faecalibacterium prausnitzii and
Escherichia coli co-abundance can distinguish irritable
bowel syndrome and inflammatory bowel disease phenotypes. Int J Med
Microbiol. 304:464–475. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nava GM and Stappenbeck TS: Diversity of
the autochthonous colonic microbiota. Gut Microbes. 2:99–104. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Baumgart DC and Sandborn WJ: Inflammatory
bowel disease: Clinical aspects and established and evolving
therapies. Lancet. 369:1641–1657. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Arumugam M, Raes J, Pelletier E, Le
Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto
JM, et al: Enterotypes of the human gut microbiome. Nature.
473:174–780. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hold GL, Schwiertz A, Aminov RI, Blaut M
and Flint HJ: Oligonucleotide probes that detect quantitatively
significant groups of butyrate-producing bacteria in human feces.
Appl Environ Microbiol. 69:4320–4324. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schwiertz A, Jacobi M, Frick JS, Richter
M, Rusch K and Köhler H: Microbiota in pediatric inflammatory bowel
disease. J Pediatr. 157:240–244.e1. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Suau A, Rochet V, Sghir A, Gramet G,
Brewaeys S, Sutren M, Rigottier-Gois L and Doré J: Fusobacterium
prausnitzii and related species represent a dominant group
within the human fecal flora. Syst Appl Microbiol. 24:139–145.
2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Walker AW, Ince J, Duncan SH, Webster LM,
Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, et al:
Dominant and diet-responsive groups of bacteria within the human
colonic microbiota. ISME J. 5:220–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Swidsinski A, Loening-Baucke V, Lochs H
and Hale LP: Spatial organization of bacterial flora in normal and
inflamed intestine: A fluorescence in situ hybridization study in
mice. World J Gastroenterol. 11:1131–1140. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hopkins MJ, Macfarlane GT, Furrie E, Fite
A and Macfarlane S: Characterisation of intestinal bacteria in
infant stools using real-time PCR and northern hybridisation
analyses. FEMS Microbiol Ecol. 54:77–85. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Balamurugan R, Janardhan HP, George S,
Chittaranjan SP and Ramakrishna BS: Bacterial succession in the
colon during childhood and adolescence: Molecular studies in a
southern Indian village. Am J Clin Nutr. 88:1643–1647. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang M, Ahrné S, Antonsson M and Molin G:
T-RFLP combined with principal component analysis and 16S rRNA gene
sequencing: An effective strategy for comparison of fecal
microbiota in infants of different ages. J Microbiol Methods.
59:53–69. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fallani M, Rigottier-Gois L, Aguilera M,
Bridonneau C, Collignon A, Edwards CA, Corthier G and Doré J:
Clostridium difficile and Clostridium perfringens species detected
in infant faecal microbiota using 16S rRNA targeted probes. J
Microbiol Methods. 67:150–161. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lopez-Siles M, Duncan SH, Garcia-Gil LJ
and Martinez-Medina M: Faecalibacterium prausnitzii: From
microbiology to diagnostics and prognostics. ISME J. 11:841–852.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sokol H, Pigneur B, Watterlot L, Lakhdari
O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C,
Furet JP, Corthier G, et al: Faecalibacterium prausnitzii is
an anti-inflammatory commensal bacterium identified by gut
microbiota analysis of Crohn disease patients. Proc Natl Acad Sci
USA. 105:16731–16736. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Miquel S, Martín R, Rossi O,
Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM and
Langella P: Faecalibacterium prausnitzii and human
intestinal health. Curr Opin Microbiol. 16:255–261. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Frank DN, St Amand AL, Feldman RA,
Boedeker EC, Harpaz N and Pace NR: Molecular-phylogenetic
characterization of microbial community imbalances in human
inflammatory bowel diseases. Proc Natl Acad Sci USA.
104:13780–13785. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Martinez-Medina M, Aldeguer X,
Gonzalez-Huix F, Acero D and Garcia-Gil LJ: Abnormal microbiota
composition in the ileocolonic mucosa of Crohn's disease patients
as revealed by polymerase chain reaction-denaturing gradient gel
electrophoresis. Inflamm Bowel Dis. 12:1136–1145. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sokol H, Seksik P, Furet JP, Firmesse O,
Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P and
Doré J: Low counts of Faecalibacterium prausnitzii in
colitis microbiota. Inflamm Bowel Dis. 15:1183–1189. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Swidsinski A, Loening-Baucke V,
Vaneechoutte M and Doerffel Y: Active Crohn's disease and
ulcerative colitis can be specifically diagnosed and monitored
based on the biostructure of the fecal flora. Inflamm Bowel Dis.
14:147–161. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Willing B, Halfvarson J, Dicksved J,
Rosenquist M, Järnerot G, Engstrand L, Tysk C and Jansson JK: Twin
studies reveal specific imbalances in the mucosa-associated
microbiota of patients with ileal Crohn's disease. Inflamm Bowel
Dis. 15:653–660. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Furet JP, Kong LC, Tap J, Poitou C,
Basdevant A, Bouillot JL, Mariat D, Corthier G, Doré J, Henegar C,
et al: Differential Adaptation of Human Gut Microbiota to bariatric
surgery-induced weight loss: Links with metabolic and low-grade
inflammation markers. Diabetes. 59:3049–3057. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hansen R, Russell RK, Reiff C, Louis P,
McIntosh F, Berry SH, Mukhopadhya I, Bisset WM, Barclay AR, Bishop
J, et al: Microbiota of de-novo pediatric IBD: Increased
Faecalibacterium prausnitzii and reduced bacterial diversity
in Crohn's but not in ulcerative colitis. Am J Gastroenterol.
107:1913–1922. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jia W, Whitehead RN, Griffiths L, Dawson
C, Waring RH, Ramsden DB, Hunter JO and Cole JA: Is the abundance
of Faecalibacterium prausnitzii relevant to Crohn's disease?
FEMS Microbiol Lett. 310:138–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kabeerdoss J, Sankaran V, Pugazhendhi S
and Ramakrishna BS: Clostridium leptum group bacteria abundance and
diversity in the fecal microbiota of patients with inflammatory
bowel disease: A case-control study in India. BMC Gastroenterol.
13:202013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Machiels K, Joossens M, Sabino J, De
Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F,
Verbeke K, et al: A decrease of the butyrate-producing species
Roseburia hominis and Faecalibacterium prausnitzii
defines dysbiosis in patients with ulcerative colitis. Gut.
63:1275–1283. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Vermeiren J, van den Abbeele P, Laukens D,
Vigsnæs LK, de Vos M, Boon N and van de Wiele T: Decreased
colonization of fecal Clostridium coccoides/Eubacterium rectale
species from ulcerative colitis patients in an in vitro dynamic gut
model with mucin environment. FEMS Microbiol Ecol. 79:685–696.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang XL, Zhang X, Fei XY, Chen ZG, Hao
YP, Zhang S, Zhang MM, Yu YQ and Yu CG: Faecalibacterium
prausnitzii supernatant ameliorates dextran sulfate sodium
induced colitis by regulating Th17 cell differentiation. World J
Gastroenterol. 22:5201–5210. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rossi O, Khan MT, Schwarzer M, Hudcovic T,
Srutkova D, Duncan SH, Stolte EH, Kozakova H, Flint HJ, Samsom JN,
et al: Faecalibacterium prausnitzii strain HTF-F and its
extracellular polymeric matrix attenuate clinical parameters in
DSS-induced colitis. PLoS One. 10:e01230132015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Breyner NM, Michon C, de Sousa CS, Vilas
Boas PB, Chain F, Azevedo VA, Langella P and Chatel JM: Microbial
anti-inflammatory molecule (MAM) from Faecalibacterium
prausnitzii shows a protective effect on DNBS and DSS-induced
colitis model in mice through inhibition of NF-κB pathway. Front
Microbiol. 8:1142017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tran CD, Katsikeros R and Abimosleh SM:
Current and novel treatments for ulcerative colitis, Ulcerative
Colitis from Genetics to Complications. Shennak Prof. Mustafa:
ISBN: 978-953-307-853-3, InTech. 2012, http://www.intechopen.com/books/ulcerative-colitis-from-genetics-to-complications/current-and-novel-treatments-for-ulcerative-colitis
|
35
|
Hungate RE: Chapter IV a roll tube method
for cultivation of strict anaerobes. Methods Microbiol. 3:117–132.
1969. View Article : Google Scholar
|
36
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals, . Guide for the Care and Use of Laboratory Animals. 8th.
National Academies Press (US); Washington, DC: 2011, https://www.ncbi.nlm.nih.gov/books/NBK54050
|
37
|
Hausmann M, Obermeier F, Paper DH, Balan
K, Dunger N, Menzel K, Falk W, Schoelmerich J, Herfarth H and
Rogler G: In vivo treatment with the herbal phenylethanoid
acteoside ameliorates intestinal inflammation in dextran sulphate
sodium-induced colitis. Clin Exp Immunol. 148:373–381. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Takagi T, Naito Y, Uchiyama K, Suzuki T,
Hirata I, Mizushima K, Tsuboi H, Hayashi N, Handa O, Ishikawa T, et
al: Carbon monoxide liberated from carbon monoxide-releasing
molecule exerts an anti-inflammatory effect on dextran sulfate
sodium-induced colitis in mice. Dig Dis Sci. 56:1663–1671. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Chassaing B, Aitken JD, Malleshappa M and
Vijay-Kumar M: Dextran sulfate sodium (DSS)-induced colitis in
mice. Curr Protoc Immunol. 104:Unit 15.25. 2014. View Article : Google Scholar : PubMed/NCBI
|