1
|
Turer AT and Hill JA: Pathogenesis of
myocardial ischemia-reperfusion injury and rationale for therapy.
Am J Cardiol. 106:360–368. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thind GS, Agrawal PR, Hirsh B, Saravolatz
L, Chen-Scarabelli C, Narula J and Scarabelli TM: Mechanisms of
myocardial ischemia-reperfusion injury and the cytoprotective role
of minocycline: Scope and limitations. Future Cardiol. 11:61–76.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang Q, He GW, Underwood MJ and Yu CM:
Cellular and molecular mechanisms of endothelial
ischemia/reperfusion injury: Perspectives and implications for
postischemic myocardial protection. Am J Transl Res. 8:765–777.
2016.PubMed/NCBI
|
4
|
Liu B, Tan Y, Wang D and Liu M: Puerarin
for ischaemic stroke. Cochrane Database Syst Rev.
2:CD0049552016.PubMed/NCBI
|
5
|
Wei SY: Progress on cardiovascular
protections and mechanism research of puerarin. Zhongguo Zhong Yao
Za Zhi. 40:2278–2284. 2015.(In Chinese). PubMed/NCBI
|
6
|
Tang H, Song X, Ling Y, Wang X, Yang P,
Luo T and Chen A: Puerarin attenuates myocardial
hypoxia/reoxygenation injury by inhibiting autophagy via the Akt
signaling pathway. Mol Med Rep. 15:3747–3754. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wenjun H, Jing W, Tao L, Ling M, Yan Y,
Xiaorong Z and Rui Z: The protective effect of puerarin on
myocardial infarction reperfusion injury (MIRI): A meta-analysis of
randomized studies in rat models. Med Sci Monit. 21:1700–1706.
2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo BQ, Xu JB, Xiao M, Ding M and Duan LJ:
Puerarin reduces ischemia/reperfusion-induced myocardial injury in
diabetic rats via upregulation of vascular endothelial growth
factor A/angiotensin-1 and suppression of apoptosis. Mol Med Rep.
17:7421–7427. 2018.PubMed/NCBI
|
9
|
Gao Q, Pan HY, Bruce IC and Xia Q:
Improvement of ventricular mechanical properties by puerarin
involves mitochondrial permeability transition in isolated rat
heart during ischemia and reperfusion. Conf Proc IEEE Eng Med Biol
Soc. 6:5591–5594. 2005.PubMed/NCBI
|
10
|
Ambros V: MicroRNA pathways in flies and
worms: Growth, death, fat, stress, and timing. Cell. 113:673–676.
2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Koroleva IA, Nazarenko MS and Kucher AN:
Role of microRNA in development of instability of atherosclerotic
plaques. Biochemistry (Mosc). 82:1380–1390. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pordzik J, Pisarz K, De Rosa S, Jones AD,
Eyileten C, Indolfi C, Malek L and Postula M: The potential role of
platelet-related microRNAs in the development of cardiovascular
events in high-risk populations, including diabetic patients: A
review. Front Endocrinol (Lausanne). 9:742018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang Q, Yang K and Li A: microRNA-21
protects against ischemia-reperfusion and
hypoxia-reperfusion-induced cardiocyte apoptosis via the
phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med
Rep. 9:2213–2220. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu H and Fan GC: Role of microRNAs in the
reperfused myocardium towards post-infarct remodelling. Cardiovasc
Res. 94:284–292. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gu GL, Xu XL, Sun XT, Zhang J, Guo CF,
Wang CS, Sun B, Guo GL, Ma K, Huang YY, et al: Cardioprotective
effect of MicroRNA-21 in murine myocardial infarction. Cardiovasc
Ther. 33:109–117. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Han Q, Zhang HY, Zhong BL, Zhang B and
Chen H: Antiapoptotic effect of recombinant HMGB1 A-box protein via
regulation of microRNA-21 in myocardial ischemia-reperfusion injury
model in rats. DNA Cell Biol. 35:192–202. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Qin Y, Yu Y, Dong H, Bian X, Guo X and
Dong S: MicroRNA 21 inhibits left ventricular remodeling in the
early phase of rat model with ischemia-reperfusion injury by
suppressing cell apoptosis. Int J Med Sci. 9:413–423. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yang Q, Yang K, Li A and Tan W:
Anti-apoptosis and expression of microRNA-21 in rat myocardium
during early ischemia-reperfusion injury. Zhong Nan Da Xue Xue Bao
Yi Xue Ban. 38:483–489. 2013.(In Chinese). PubMed/NCBI
|
19
|
Cheng Y and Zhang C: MicroRNA-21 in
cardiovascular disease. J Cardiovasc Transl Res. 3:251–255. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cheng Y, Zhu P, Yang J, Liu X, Dong S,
Wang X, Chun B, Zhuang J and Zhang C: Ischaemic
preconditioning-regulated miR-21 protects heart against
ischaemia/reperfusion injury via anti-apoptosis through its target
PDCD4. Cardiovasc Res. 87:431–439. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Mirzayans R, Andrais B, Kumar P and Murray
D: The growing complexity of cancer cell response to DNA-damaging
agents: Caspase 3 mediates cell death or survival? Int J Mol Sci.
17:E7082016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sinning C, Westermann D and Clemmensen P:
Oxidative stress in ischemia and reperfusion: Current concepts,
novel ideas and future perspectives. Biomark Med. 11:11031–11040.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Becker BF, Massoudy P, Permanetter B,
Raschke P and Zahler S: Possible significance of free oxygen
radicals for reperfusion injury. Z Kardiol. 5 (Suppl 82):49–58.
1993.(In German).
|
25
|
Xie B, Wang Q, Zhou C, Wu J and Xu D:
Efficacy and safety of the injection of the traditional chinese
medicine puerarin for the treatment of diabetic peripheral
neuropathy: A systematic review and meta-analysis of 53 randomized
controlled trials. Evid Based Complement Alternat Med.
2018:28346502018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ye Y, Perez-Polo JR, Qian J and Birnbaum
Y: The role of microRNA in modulating myocardial
ischemia-reperfusion injury. Physiol Genomics. 43:534–542. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fliss H and Gattinger D: Apoptosis in
ischemic and reperfused rat myocardium. Circ Res. 79:949–956. 1996.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yellon DM and Hausenloy DJ: Myocardial
reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li W, Lu M, Zhang Y, Xia D, Chen Z, Wang
L, Yin N and Wang Z: Puerarin attenuates the daunorubicin-induced
apoptosis of H9c2 cells by activating the PI3K/Akt signaling
pathway via the inhibition of Ca2+ influx. Int J Mol Med.
40:1889–1894. 2017.PubMed/NCBI
|
30
|
Ling C, Liang J, Zhang C, Li R, Mou Q, Qin
J, Li X and Wang J: Synergistic effects of salvianolic acid B and
puerarin on cerebral ischemia reperfusion injury. Molecules.
23:E5642018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu Y, Tang Q, Shao S, Chen Y, Chen W and
Xu X: Lyophilized powder of catalpol and puerarin protected
cerebral vessels from ischemia by its anti-apoptosis on endothelial
cells. Int J Biol Sci. 13:327–338. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kang Z, Li Z, Huang P, Luo J, Liu P, Wang
Y, Xia T and Zhou Y: Remote ischemic preconditioning upregulates
microRNA-21 to protect the kidney in children with congenital heart
disease undergoing cardiopulmonary bypass. Pediatr Nephrol.
33:911–919. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Richart A, Loyer X, Neri T, Howangyin K,
Guérin CL, Ngkelo A, Bakker W, Zlatanova I, Rouanet M, Vilar J, et
al: MicroRNA-21 coordinates human multipotent cardiovascular
progenitors therapeutic potential. Stem Cells. 32:2908–2922. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Gross A: BCL-2 family proteins as
regulators of mitochondria metabolism. Biochim Biophys Acta.
1857:1243–1246. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Song XB, Liu G, Wang ZY and Wang L:
Puerarin protects against cadmium-induced proximal tubular cell
apoptosis by restoring mitochondrial function. Chem Biol Interact.
260:219–231. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu Y, Ren L, Liu W and Xiao Z: MiR-21
regulates the apoptosis of keloid fibroblasts by caspase-8 and
mitochondrial-mediated apoptotic signaling pathway via targeting
fasL. Biochem Cell Biol. 96:548–555. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu H, Wang J, Ma H, Xiao Z and Dong X:
MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid.
Oncotarget. 8:92914–92925. 2017.PubMed/NCBI
|
38
|
Li X, Cai W, Lee K, Liu B, Deng Y, Chen Y,
Zhang X, He JC and Zhong Y: Puerarin attenuates diabetic kidney
injury through the suppression of NOX4 expression in podocytes. Sci
Rep. 7:146032017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang T, Liu Y, Huang C, Mansai HAA, Wei W,
Zhang X, Li X, Liu S and Yang S: Puerarin promotes MIN6 cell
survival by reducing cellular reactive oxygen species. Mol Med Rep.
17:7281–7286. 2018.PubMed/NCBI
|
40
|
Zhou X, Bai C, Sun X, Gong X, Yang Y, Chen
C, Shan G and Yao Q: Puerarin attenuates renal fibrosis by reducing
oxidative stress induced-epithelial cell apoptosis via MAPK signal
pathways in vivo and in vitro. Ren Fail. 39:423–431. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Gang C, Qiang C, Xiangli C, Shifen P,
Chong S and Lihong L: Puerarin suppresses angiotensin II-induced
cardiac hypertrophy by inhibiting NADPH oxidase activation and
oxidative stress-triggered AP-1 signaling pathways. J Pharm Pharm
Sci. 18:235–248. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wei C, Li L, Kim IK, Sun P and Gupta S:
NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under
oxidative stress. Free Radic Res. 48:282–291. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zuo L, Zhou T, Pannell BK, Ziegler AC and
Best TM: Biological and physiological role of reactive oxygen
species - the good, the bad and the ugly. Acta Physiol (Oxf).
214:329–348. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhou T, Prather ER, Garrison DE and Zuo L:
Interplay between ROS and antioxidants during ischemia-reperfusion
injuries in cardiac and skeletal muscle. Int J Mol Sci.
19:E4172018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ma Y, Gai Y, Yan J, Li J and Zhang Y:
Puerarin attenuates anoxia/reoxygenation injury through enhancing
Bcl-2 associated athanogene 3 expression, a modulator of apoptosis
and autophagy. Med Sci Monit. 22:977–983. 2016. View Article : Google Scholar : PubMed/NCBI
|