1
|
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell
WJ, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage
cells from human adipose tissue: Implications for cell-based
therapies. Tissue Eng. 7:211–226. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zuk PA: The adipose-derived stem cell:
Looking back and looking ahead. Mol Biol Cell. 21:1783–1787. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Davies DV and White JE: The structure and
weight of synovial fat pads. J Anat. 95:30–37. 1961.PubMed/NCBI
|
4
|
Dragoo JL and Chang W: Arthroscopic
harvest of adipose-derived mesenchymal stem cells from the
infrapatellar fat pad. Am J Sports Med. 45:3119–3127. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Arumugam SB, Trentz OA, Arikketh D,
Senthinathan V, De Rosario B and Mohandas PV: Detection of
embryonic stem cell markers in adult human adipose tissue-derived
stem cells. Indian J Pathol Microbiol. 54:501–508. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Radhakrishnan S, Trentz OA, Parthasarathy
VK and Sellathamby S: Human adipose tissue-derived stem cells
differentiate to neuronal-like lineage cells without specific
induction. Cell Biol (Henderson NV). 6:2017. View Article : Google Scholar
|
7
|
Trentz OA, Arikketh D, Sentilnathan V,
Hemmi S, Handschin AE, de Rosario B, Mohandas P and Mohandas PV:
Surface proteins and osteoblast markers: Characterization of human
adipose tissue-derived osteogenic cells. Eur J Trauma Emerg Surg.
36:457–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Turinetto V, Vitale E and Giachino C:
Senescence in human mesenchymal stem cells: Functional changes and
implications in stem cell-based therapy. Int J Mol Sci. 17(pii):
E11642016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wall ME, Bernacki SH and Loboa EG: Effects
of serial passaging on the adipogenic and osteogenic
differentiation potential of adipose-derived human mesenchymal stem
cells. Tissue Engg. 13:1291–1298. 2007. View Article : Google Scholar
|
10
|
Madeira A, da Silva CL, dos Santos F,
Camafeita E, Cabral JM and Sá-Correia I: Human mesenchymal stem
cell expression program upon extended ex-vivo cultivation, as
revealed by 2-DE-based quantitative proteomics. PLoS One.
7:e435232012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tangchitphisut P, Srikaew N, Numhom S,
Tangprasittipap S, Woratanarat P, Wongsak S, Kijkunasathian C,
Hongeng S, Murray IR and Tawonsawatruk T: Infrapatellar fat pad: An
alternative source of adipose-derived mesenchymal stem cells.
Arthritis. 2016:40198732016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kim HJ, Ryu YH, Ahn JI, Park JK and Kim
JC: Characterization of immortalized human corneal endothelial cell
line using HPV 16 E6/E7 on lyophilized human amniotic membrane.
Korean J Ophthalmol. 20:47–54. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bishi DK, Mathapati S, Venugopal JR,
Guhathakurta S, Cherian KM, Ramakrishnaa S and Verma RS:
Trans-differentiation of human mesenchymal stem cells generate
functional hepatospheres on poly(L-lactic
acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. J
Mater Chem B. 1:3972–3984. 2013. View Article : Google Scholar
|
14
|
Lendahl U, Zimmerman LB and McKay RD: CNS
stem cells express a new class of intermediate filament protein.
Cell. 60:585–595. 1990. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lenka N and Ramasamy SK: Neural induction
from ES cells portrays default commitment but instructive
maturation. PLoS One. 2:e13492007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gallo-Oller G, Ordoñezb R and Dotorc J: A
new background subtraction method for Western blot densitometry
band quantification through image analysis software. J Immunol
Methods. 457:1–5. 2008. View Article : Google Scholar
|
17
|
Shim JW, Park CH, Bae YC, Bae JY, Chung S,
Chang MY, Koh HC, Lee HS, Hwang SJ, Lee KH, et al: Generation of
functional dopamine neurons from neural precursor cells isolated
from the subventricular zone and white matter of the adult rat
brain using Nurr1 overexpression. Stem Cells. 25:1252–1262. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Casper KB and McCarthy KD: GFAP-positive
progenitor cells produce neurons and oligodendrocytes throughout
the CNS. Mol Cell Neurosci. 31:676–684. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lariviere RC and Julien JP: Functions of
intermediate filaments in neuronal development and disease. J
Neurobiol. 58:131–48. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y, Namba T, Liu J, Suzuki R, Shioda S
and Seki T: Glial fibrillary acidic protein-expressing neural
progenitors give rise to immature neurons via early intermediate
progenitors expressing both glial fibrillary acidic protein and
neuronal markers in the adult hippocampus. Neuroscience.
166:241–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kong J and Yu S: Fourier transform
infrared spectroscopic analysis of protein secondary structures.
Acta Biochim Biophys Sin (Shanghai). 39:549–559. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Narhi LO, Rosenfeld R, Talvenheimo J,
Prestrelski SJ, Arakawa T, Lary JW, Kolvenbach CG, Hecht R, Boone
T, Miller JA, et al: Comparison of the biophysical characteristics
of human brain-derived neurotrophic factor, neurotrophin-3, and
nerve growth factor. J Biol Chem. 268:13309–13317. 1993.PubMed/NCBI
|
23
|
Travaglia A, Satriano C, Giuffrida ML,
Mendola DL, Rampazzo E, Prodid L and Rizzarelliab E:
Electrostatically driven interaction of silica-supported lipid
bilayer nano platforms and a nerve growth factor-mimicking peptide.
Soft Matter. 9:4648–4654. 2013. View Article : Google Scholar
|
24
|
Segal RA: Selectivity in neurotrophin
signaling: Theme and variations. Annu Rev Neurosci. 26:299–330.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Windisch JM, Marksteiner R and Schneider
R: Nerve growth factor binding site on TrkA mapped to a single
24-amino acid leucine-rich motif. J Biol Chem. 270:28133–28138.
1995. View Article : Google Scholar : PubMed/NCBI
|
26
|
Doner GP and Noyes FR: Arthroscopic
resection of fat pad lesions and infrapatellar contractures.
Arthrosc Tech. 3:e413–e416. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ali MAE, Fuse K, Tadokoro Y, Hoshii T,
Ueno M, Kobayashi M, Nomura N, Vu HT, Peng H, Hegazy AM, et al:
Functional dissection of hematopoietic stem cell populations with a
stemness-monitoring system based on NS-GFP transgene expression.
Sci Rep. 7:114422017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Beekman C, Nichane M, De Clercq S, Maetens
M, Floss T, Wurst W, Bellefroid E and Marine JC: Evolutionarily
conserved role of nucleostemin: Controlling proliferation of
stem/progenitor cells during early vertebrate development. Mol Cell
Biol. 18:9291–9301. 2006. View Article : Google Scholar
|
29
|
Oktar PA, Yildirim S, Balci D and Can A:
Continual expression throughout the cell cycle and downregulation
upon adipogenic differentiation makes nucleostemin a vital human
MSC proliferation marker. Stem Cell Rev. 7:413–424. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Tsai RY and McKay RD: A multistep,
GTP-driven mechanism controlling the dynamic cycling of
nucleostemin. J Cell Biol. 168:179–184. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kafienah W, Mistry S, Williams C and
Hollander AP: Nucleostemin is a marker of proliferating stromal
stem cells in adult human bone marrow. Stem Cells. 24:1113–1120.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Qu J and Bishop JM: Nucleostemin maintains
self-renewal of embryonic stem cells and promotes reprogramming of
somatic cells to pluripotency. J Cell Biol. 197:731–745. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ma H and Pederson T: Nucleostemin: A
multiplex regulator of cell-cycle progression. Trends Cell Biol.
18:575–579. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lo D and Lu H: Nucleostemin: Another
nucleolar ‘Twister’ of the p53-MDM2 loop. Cell Cycle. 9:16,
3227–3232. 2010. View Article : Google Scholar
|
35
|
Zaragosi LE, Ailhaud G and Dani C:
Autocrine fibroblast growth factor 2 signaling is critical for
self-renewal of human multipotent adipose-derived stem cells. Stem
Cells. 24:2412–2419. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Rider DA, Dombrowski C, Sawyer AA, Ng GH,
Leong D, Hutmacher DW, Nurcombe V and Cool SM: Autocrine fibroblast
growth factor 2 increases the multipotentiality of human
adipose-derived mesenchymal stem cells. Stem Cells. 26:1598–1608.
2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chou CH and Modo M: Human neural stem
cell-induced endothelial morphogenesis requires autocrine/paracrine
and juxtacrine signalling. Sci Rep. 6:290292016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cohen MA, Itsykson P and Reubinoff BE: The
role of FGF-signaling in early neural specification of human
embryonic stem cells. Dev Biol. 340:450–458. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Frautschya SA, Gonzaleza AM, Martinez
Murillo R, Carcellerb F, Cuevasb P and Bairda A: Expression of
basic fibroblast growth factor and its receptor in the rat
subfornical organ. Neuroendocrinology. 54:55–61. 1991.
|
40
|
Gensburger C, Labourdette G and
Sensenbrenner M: Brain basic fibroblast growth factor stimulates
the proliferation of rat neuronal precursor cells in vitro. FEBS
Lett. 217:1–5. 1987. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gnecchi M, Zhang Z, Ni A and Dzau VJ:
Paracrine mechanisms in adult stem cell signaling and therapy. Circ
Res. 103:1204–1219. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ying QL, Stavridis M, Griffiths D, Li M
and Smith A: Conversion of embryonic stem cells into
neuroectodermal precursors in adherent monoculture. Nat Biotechnol.
21:183–186. 2003. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Yang H, Xia Y, Lu SQ, Soong TW and Feng
ZW: Basic fibroblast growth factor-induced neuronal differentiation
of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and
transcription factor AP-1. J Biol Chem. 283:5287–5295. 2008.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Gruber HE, Somayaji S, Riley F, Hoelscher
GL, Norton HJ, Ingram J and Hanley EN Jr: Human adipose-derived
mesenchymal stem cells: Serial passaging, doubling time and cell
senescence. Biotech Histochem. 87:303–311. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Seeliger C, Culmes M, Schyschka L, Yan X,
Damm G, Wang Z, Kleeff J, Thasler WE, Hengstler J, Stöckle U, et
al: Decrease of global methylation improves significantly hepatic
differentiation of Ad-MSCs: Possible future application for urea
detoxification. Cell Transplant. 22:119–131. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ahmed AS, Sheng MH, Wasnik S, Baylink DJ
and Lau KW: Effect of ageing on stem cells. World J Exp Med.
7:1–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ho AD, Wagner W and Mahlknecht U: Stem
cells and aging. EMBO Rep. 6 (Suppl 1):S35–S38. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yan X, Ehnert S, Culmes M, Bachmann A,
Seeliger C, Schyschka L, Wang Z, Rahmanian-Schwarz A, Stöckle U, De
Sousa PA, et al: 5-azacytidine improves the osteogenic
differentiation potential of aged human adipose-derived mesenchymal
stem cells by DNA demethylation. PLoS One. 9:e908462014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wu PK, Wang JY, Chen CF, Chao KY, Chang
MC, Chen WM and Hung SC: Decreased radiosensitivity and increased
DNA repair activity a demethylation. PLoS One. 9:e90846PubMed/NCBI
|
50
|
von Bahr L, Sundberg B, Lönnies L, Sander
B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Le
Blanc K and Ringdén O: Long-term complications, immunologic
effects, and role of passage for outcome in mesenchymal stromal
cell therapy. Biol Blood Marrow Transplant. 18:557–564. 2012.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Moll G, Rasmusson-Duprez I, von Bahr L,
Connolly-Andersen AM, Elgue G, Funke L, Hamad OA, Lönnies H,
Magnusson PU, Sanchez J, et al: Are therapeutic human mesenchymal
stromal cells compatible with human blood? Stem Cells.
30:1565–1574. 2012. View Article : Google Scholar : PubMed/NCBI
|