1
|
Compston A and Coles A: Multiple
sclerosis. Lancet. 372:1502–1517. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tullman MJ: Overview of the epidemiology,
diagnosis, and disease progression associated with multiple
sclerosis. Am J Manag Care 19 (2 Suppl). S15–S20. 2013.
|
3
|
Garg N and Smith TW: An update on
immunopathogenesis, diagnosis, and treatment of multiple sclerosis.
Brain Behav. 5:e003622015. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Clerico M, Artusi CA, Liberto AD, Rolla S,
Bardina V, Barbero P, Mercanti SF and Durelli L: Natalizumab in
multiple sclerosis: Long-term management. Int J Mol Sci. 18(pii):
E9402017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sospedra M, Planas R and Martin R:
Long-term safety and efficacy of natalizumab in relapsing-remitting
multiple sclerosis: Impact on quality of life. Patient Relat
Outcome Meas. 5:25–33. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Polman CH, O'Connor PW, Havrdova E,
Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD,
Giovannoni G, Wajgt A, et al: A randomized, placebo-controlled
trial of natalizumab for relapsing multiple sclerosis. N Engl J
Med. 354:899–910. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Radue EW, Stuart WH, Calabresi PA,
Confavreux C, Galetta SL, Rudick RA, Lublin FD, Weinstock-Guttman
B, Wynn DR, Fisher E, et al: Natalizumab plus interferon beta-1a
reduces lesion formation in relapsing multiple sclerosis. J Neurol
Sci. 292:28–35. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Johnson WE, Li C and Rabinovic A:
Adjusting batch effects in microarray expression data using
empirical Bayes methods. Biostatistics. 8:118–127. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Polman CH, Reingold SC, Banwell B, Clanet
M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M,
Kappos L, et al: Diagnostic criteria for multiple sclerosis: 2010
Revisions to the McDonald criteria. Ann Neurol. 69:292–302. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Saccà F, Costabile T, Carotenuto A,
Lanzillo R, Moccia M, Pane C, Russo CV, Barbarulo AM, Casertano S,
Rossi F, et al: The EDSS integration with the brief international
cognitive assessment for multiple sclerosis and orientation tests.
Mult Scler. 23:1289–1296. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gustafsson M, Edström M, Gawel D, Nestor
CE, Wang H, Zhang H, Barrenäs F, Tojo J, Kockum I, Olsson T, et al:
Integrated genomic and prospective clinical studies show the
importance of modular pleiotropy for disease susceptibility,
diagnosis and treatment. Genome Med. 6:172014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang DW, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res 38 (Web Server Issue). W214–W220. 2010.
View Article : Google Scholar
|
16
|
van 't Veer LJ, Dai H, van de Vijver MJ,
He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ,
Witteveen AT, et al: Gene expression profiling predicts clinical
outcome of breast cancer. Nature. 415:530–536. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nutt CL, Mani DR, Betensky RA, Tamayo P,
Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor
TT, et al: Gene expression-based classification of malignant
gliomas correlates better with survival than histological
classification. Cancer Res. 63:1602–1607. 2003.PubMed/NCBI
|
18
|
Shipp MA, Ross KN, Tamayo P, Weng AP,
Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, et
al: Diffuse large B-cell lymphoma outcome prediction by
gene-expression profiling and supervised machine learning. Nat Med.
8:68–74. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alon U, Barkai N, Notterman DA, Gish K,
Ybarra S, Mack D and Levine AJ: Broad patterns of gene expression
revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. Proc Natl Acad Sci USA.
96:6745–6750. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schummer M, Ng WV, Bumgarner RE, Nelson
PS, Schummer B, Bednarski DW, Hassell L, Baldwin RL, Karlan BY and
Hood L: Comparative hybridization of an array of 21,500 ovarian
cDNAs for the discovery of genes overexpressed in ovarian
carcinomas. Gene. 238:375–385. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ramaswamy S, Tamayo P, Rifkin R, Mukherjee
S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, et
al: Multiclass cancer diagnosis using tumor gene expression
signatures. Proc Natl Acad Sci USA. 98:15149–15154. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Alizadeh AA, Eisen MB, Davis RE, Ma C,
Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, et al:
Distinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature. 403:503–511. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ross DT, Scherf U, Eisen MB, Perou CM,
Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M,
et al: Systematic variation in gene expression patterns in human
cancer cell lines. Nat Genet. 24:227–235. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bhattacharjee A, Richards WG, Staunton J,
Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et
al: Classification of human lung carcinomas by mRNA expression
profiling reveals distinct adenocarcinoma subclasses. Proc Natl
Acad Sci USA. 98:13790–13795. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tibshirani R, Hastie T, Narasimhan B and
Chu G: Diagnosis of multiple cancer types by shrunken centroids of
gene expression. Proc Natl Acad Sci USA. 99:6567–6572. 2002.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lorscheider J, Benkert P, Lienert C, Hänni
P, Derfuss T, Kuhle J, Kappos L and Yaldizli Ö: Comparative
analysis of natalizumab versus fingolimod as second-line treatment
in relapsing-remitting multiple sclerosis. Mult Scler J.
24:777–785. 2018. View Article : Google Scholar
|
27
|
Bousquet J, Anto JM, Sterk PJ, Adcock IM,
Chung KF, Roca J, Agusti A, Brightling C, Cambon-Thomsen A, Cesario
A, et al: Systems medicine and integrated care to combat chronic
noncommunicable diseases. Genome Med. 3:432011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cavaliere F, Montanari E, Emerson A,
Buschini A and Cozzini P: In silico pharmacogenetic approach: The
natalizumab case study. Toxicol Appl Pharmacol. 330:93–99. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hajipour MJ, Ghasemi F, Aghaverdi H,
Raoufi M, Linne U, Atyabi F, Nabipour I, Azhdarzadeh M,
Derakhshankhah H, Lotfabadi A, et al: Sensing of Alzheimer's
disease and multiple sclerosis using nano-bio interfaces. J
Alzheimers Dis. 59:1187–1202. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lichtenfels R, Rappl G, Hombach AA,
Recktenwald CV, Dressler SP, Abken H and Seliger B: A proteomic
view at T cell costimulation. PLoS One. 7:e329942012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rhead B, Brorson IS, Berge T, Adams C,
Quach H, Moen SM, Berg-Hansen P, Celius EG, Sangurdekar DP, Bronson
PG, et al: Increased DNA methylation of SLFN12 in CD4+ and CD8+ T
cells from multiple sclerosis patients. PLoS One. 13:e02065112018.
View Article : Google Scholar : PubMed/NCBI
|