1
|
Abdalla A: Tau protein as a target for
Alzheimer's disease management. Saudi Pharm J. 23:405–406. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Mucke L: Neuroscience: Alzheimer's
disease. Nature. 461:895–897. 2009. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Tayeb HO, Yang HD, Price BH and Tarazi FI:
Pharmacotherapies for Alzheimer's disease: Beyond cholinesterase
inhibitors. Pharmacol Ther. 134:8–25. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Martinelli-Boneschi F, Giacalone G,
Magnani G, Biella G, Coppi E, Santangelo R, Brambilla P, Esposito
F, Lupoli S, Clerici F, et al: Pharmacogenomics in Alzheimer's
disease: A genome-wide association study of response to
cholinesterase inhibitors. Neurobiol Aging. 34:1711.e7–13. 2013.
View Article : Google Scholar
|
5
|
Citron M: Alzheimer's disease: Strategies
for disease modification. Nat Rev Drug Discov. 9:387–398. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mushtaq G, Greig NH, Khan JA and Kamal MA:
Status of acetylcholinesterase and butyrylcholinesterase in
Alzheimer's disease and type 2 diabetes mellitus. CNS Neurol Disord
Drug Targets. 13:1432–1439. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR
and Ribeiro FM: Alzheimer's disease: Targeting the cholinergic
system. Curr Neuropharmacol. 14:101–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Deb PK, Sharma A, Piplani P and
Akkinepally RR: Molecular docking and receptor-specific 3D-QSAR
studies of acetylcholinesterase inhibitors. Mol Divers. 16:803–823.
2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Silman I and Sussman JL:
Acetylcholinesterase: How is structure related to function? Chem
Biol Interact. 175:3–10. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Decroocq C, Stauffert F, Pamlard O,
Oulaïdi F, Gallienne E, Martin OR, Guillou C and Compain P:
Iminosugars as a new class of cholinesterase inhibitors. Bioorg Med
Chem Lett. 25:830–833. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Saeed A, Mahesar PA, Zaib S, Khan MS,
Matin A, Shahid M and Iqbal J: Synthesis, cytotoxicity and
molecular modelling studies of new phenylcinnamide derivatives as
potent inhibitors of cholinesterases. Eur J Med Chem. 78:43–53.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Krátký M, Štěpánková Š, Vorčáková K and
Vinšová J: Salicylanilide diethyl phosphates as cholinesterases
inhibitors. Bioorg Chem. 58:48–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tao LX, Huang XT, Chen YT, Tang XC and
Zhang HY: Acetylcholinesterase-independent protective effects of
huperzine A against iron overload-induced oxidative damage and
aberrant iron metabolism signaling in rat cortical neurons. Acta
Pharmacol Sin. 37:1391–1400. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou D, Zhou W, Song JK, Feng ZY, Yang RY,
Wu S, Wang L, Liu AL and Du GH: DL0410, a novel dual cholinesterase
inhibitor, protects mouse brains against Aβ-induced neuronal damage
via the Akt/JNK signaling pathway. Acta Pharmacol Sin.
37:1401–1412. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang RY, Zhao G, Wang DM, Pang XC, Wang
SB, Fang JS, Li C, Liu AL, Wu S and Du GH: DL0410 can reverse
cognitive impairment, synaptic loss and reduce plaque load in
APP/PS1 transgenic mice. Pharmacol Biochem Behav. 139:15–26. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Lian W, Fang J, Xu L, Zhou W, Kang D,
Xiong W, Jia H, Liu AL and Du GH: DL0410 ameliorates memory and
cognitive impairments induced by scopolamine via increasing
cholinergic neurotransmission in mice. Molecules. 22(pii):
E4102017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fang J, Yang R, Gao L, Zhou D, Yang S, Liu
AL and Du GH: Predictions of BuChE inhibitors using support vector
machine and naive bayesian classification techniques in drug
discovery. J Chem Inf Model. 53:3009–3020. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lian W, Jia H, Xu L, Zhou W, Kang D, Liu A
and Du G: Multi-protection of DL0410 in ameliorating cognitive
defects in D-galactose induced aging mice. Front Aging Neurosci.
9:4092017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Clapham J and Kilpatrick GJ: Histamine H3
receptors modulate the release of [3H]-acetylcholine from slices of
rat entorhinal cortex: Evidence for the possible existence of H3
receptor subtypes. Br J Pharmacol. 107:919–923. 1992. View Article : Google Scholar : PubMed/NCBI
|
20
|
Arrang JM, Garbarg M and Schwartz JC:
Auto-inhibition of brain histamine release mediated by a novel
class (H3) of histamine receptor. Nature. 302:832–837. 1983.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Blandina P, Giorgetti M, Bartolini L,
Cecchi M, Timmerman H, Leurs R, Pepeu G and Giovannini MG:
Inhibition of cortical acetylcholine release and cognitive
performance by histamine H3 receptor activation in rats. Br J
Pharmacol. 119:1656–1664. 1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bongers G, Bakker RA and Leurs R:
Molecular aspects of the histamine H3 receptor. Biochem Pharmacol.
73:1195–1204. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fang J, Li Y, Liu R, Pang X, Li C, Yang R,
He Y, Lian W, Liu AL and Du GH: Discovery of multitarget-directed
ligands against Alzheimer's disease through systematic prediction
of chemical-protein interactions. J Chem Inf Model. 55:149–164.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang A, Savas U, Hsu MH, Stout CD and
Johnson EF: Crystal structure of human cytochrome P450 2D6 with
prinomastat bound. J Biol Chem. 287:10834–10843. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang D, Huang C, Xin W, Ma X, Zhang W,
Zhang T and Du G: Preclinical pharmacokinetic evaluation and
metabolites identification of methyl salicylate-2-O-β-d-lactoside
in rats using LC-MS/MS and Q-TOF-MS methods. J Pharm Biomed Anal.
109:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tian S, He G, Song J, Wang S, Xin W, Zhang
D and Du G: Pharmacokinetic study of baicalein after oral
administration in monkeys. Fitoterapia. 83:532–540. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Bressolle F, Bromet-Petit M and Audran M:
Validation of liquid chromatographic and gas chromatographic
methods. Applications to pharmacokinetics. J Chromatogr B Biomed
Appl. 686:3–10. 1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xie X, Li Y, Gao D, Zhang Y and Ren Y:
Quantitative determination of euphol in rat plasma by LC-MS/MS and
its application to a pharmacokinetic study. Biomed Chromatogr.
28:1229–1234. 2014. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Godfrey KR, Arundel PA, Dong Z and Bryant
R: Modelling the double peak phenomenon in pharmacokinetics. Comput
Methods Programs Biomed. 104:62–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang QJ, Si L, Tang H, Sveigaard HH, Chow
EC and Pang KS: PBPK modeling to unravel nonlinear pharmacokinetics
of verapamil to estimate the fractional clearance for verapamil
N-demethylation in the recirculating rat liver preparation. Drug
Metab Dispos. 43:631–645. 2015. View Article : Google Scholar : PubMed/NCBI
|