1
|
Palmieri G, Capone M, Ascierto ML,
Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N
and Ascierto PA: Main roads to melanoma. J Transl Med. 7:862009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Pessina F, Navarria P, Tomatis S, Cozzi L,
Franzese C, Di Guardo L, Ascolese AM, Reggiori G, Franceschini D,
Del Vecchio M, et al: Outcome evaluation of patients with limited
brain metastasis from malignant melanoma, treated with surgery,
radiation therapy, and targeted therapy. World Neurosurg.
105:184–190. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guo Y, Bao Y, Ma M and Yang W:
Identification of key candidate genes and pathways in colorectal
cancer by integrated bioinformatical analysis. Int J Mol Sci.
18:E7222017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xu L, Shen SS, Hoshida Y, Subramanian A,
Ross K, Brunet JP, Wagner SN, Ramaswamy S, Mesirov JP and Hynes RO:
Gene expression changes in an animal melanoma model correlate with
aggressiveness of human melanoma metastases. Mol Cancer Res.
6:760–769. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Edgar R, Domrachev M and Lash AE: Gene
Expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: affy-analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1027
|
9
|
Hulsegge I, Kommadath A and Smits MA:
Globaltest and GOEAST: Two different approaches for Gene Ontology
analysis. BMC Proc. 3 (Suppl 4):S102009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al The Gene Ontology Consortium, : Gene ontology: Tool for the
unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43(D1): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bindea G, Mlecnik B, Hackl H, Charoentong
P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z and
Galon J: ClueGO: A Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks.
Bioinformatics. 25:1091–1093. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bindea G, Galon J and Mlecnik B: CluePedia
Cytoscape plugin: Pathway insights using integrated experimental
and in silico data. Bioinformatics. 29:661–663. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Scardoni G, Petterlini M and Laudanna C:
Analyzing biological network parameters with CentiScaPe.
Bioinformatics. 25:2857–2859. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Guan J, Gupta R and Filipp FV: Cancer
systems biology of TCGA SKCM: Efficient detection of genomic
drivers in melanoma. Sci Rep. 5:78572015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res 45 (W1).
W98–W102. 2017. View Article : Google Scholar
|
21
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A Portal for Facilitating Tumor Subgroup Gene
Expression and Survival Analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chang X, Zhang H, Lian S and Zhu W:
miR-137 suppresses tumor growth of malignant melanoma by targeting
aurora kinase A. Biochem Biophys Res Commun. 475:251–256. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Krasagakis K, Lindschau C, Fimmel S,
Eberle J, Quass P, Haller H and Orfanos CE: Proliferation of human
melanoma cells is under tight control of protein kinase C alpha. J
Cell Physiol. 199:381–387. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lahn MM and Sundell KL: The role of
protein kinase C-alpha (PKC-alpha) in melanoma. Melanoma Res.
14:85–89. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kabbarah O, Nogueira C, Feng B, Nazarian
RM, Bosenberg M, Wu M, Scott KL, Kwong LN, Xiao Y, Cordon-Cardo C,
et al: Integrative genome comparison of primary and metastatic
melanomas. PLoS One. 5:e107702010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hua Y, Ma X, Liu X, Yuan X, Qin H and
Zhang X: Identification of the potential biomarkers for the
metastasis of rectal adenocarcinoma. APMIS. 125:93–100. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Meng X, Chen X, Lu P, Ma W, Yue D, Song L
and Fan Q: MicroRNA-202 inhibits tumor progression by targeting
LAMA1 in esophageal squamous cell carcinoma. Biochem Biophys Res
Commun. 473:821–827. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fernandes H, D'Souza CR, Swethadri GK and
Naik CN: Ameboma of the colon with amebic liver abscess mimicking
metastatic colon cancer. Indian J Pathol Microbiol. 52:228–230.
2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ayari H, Rebii S, Ghariani W, Daghfous A,
Hasni R, Rehaiem R, Rezgui-Marhoul L and Zoghlami A: Colonic
amoebiasis simulating a cecal tumor: Case report. Med Sante Trop.
23:274–275. 2013.(In French). PubMed/NCBI
|
30
|
Moorchung N, Singh V, Srinivas V, Jaiswal
SS and Singh G: Caecal amebic colitis mimicking obstructing right
sided colonic carcinoma with liver metastases: A rare case. J
Cancer Res Ther. 10:440–442. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Grosse A: Diagnosis of colonic amebiasis
and coexisting signet-ring cell carcinoma in intestinal biopsy.
World J Gastroenterol. 22:8234–8241. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Slominski A, Kim TK, Brożyna AA,
Janjetovic Z, Brooks DL, Schwab LP, Skobowiat C, Jóźwicki W and
Seagroves TN: The role of melanogenesis in regulation of melanoma
behavior: Melanogenesis leads to stimulation of HIF-1α expression
and HIF-dependent attendant pathways. Arch Biochem Biophys.
563:79–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lewis TB, Robison JE, Bastien R, Milash B,
Boucher K, Samlowski WE, Leachman SA, Dirk Noyes R, Wittwer CT,
Perreard L and Bernard PS: Molecular classification of melanoma
using real-time quantitative reverse transcriptase-polymerase chain
reaction. Cancer. 104:1678–1686. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Riker AI, Enkemann SA, Fodstad O, Liu S,
Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The
gene expression profiles of primary and metastatic melanoma yields
a transition point of tumor progression and metastasis. BMC Med
Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Singh CK, George J, Nihal M, Sabat G,
Kumar R and Ahmad N: Novel downstream molecular targets of SIRT1 in
melanoma: A quantitative proteomics approach. Oncotarget.
5:1987–1999. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Puig-Butille JA, Vinyals A, Ferreres JR,
Aguilera P, Cabré E, Tell-Martí G, Marcoval J, Mateo F, Palomero L,
Badenas C, et al: AURKA Overexpression Is Driven by FOXM1 and
MAPK/ERK Activation in Melanoma Cells Harboring BRAF or NRAS
Mutations: Impact on Melanoma Prognosis and Therapy. J Invest
Dermatol. 137:1297–1310. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Quan L, Shi J, Tian Y, Zhang Q, Zhang Y,
Zhang Y, Hui Q and Tao K: Identification of potential therapeutic
targets for melanoma using gene expression analysis. Neoplasma.
62:733–739. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Meng QC, Wang HC, Song ZL, Shan ZZ, Yuan
Z, Zheng Q and Huang XY: Overexpression of NDC80 is correlated with
prognosis of pancreatic cancer and regulates cell proliferation. Am
J Cancer Res. 5:1730–1740. 2015.PubMed/NCBI
|
39
|
Qu Y, Li J, Cai Q and Liu B: Hec1/Ndc80 is
overexpressed in human gastric cancer and regulates cell growth. J
Gastroenterol. 49:408–418. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen ZH, Wang WT, Huang W, Fang K, Sun YM,
Liu SR, Luo XQ and Chen YQ: The lncRNA HOTAIRM1 regulates the
degradation of PML-RARA oncoprotein and myeloid cell
differentiation by enhancing the autophagy pathway. Cell Death
Differ. 24:212–224. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yan X, Huang L, Liu L, Qin H and Song Z:
Nuclear division cycle 80 promotes malignant progression and
predicts clinical outcome in colorectal cancer. Cancer Med.
7:420–432. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ahonen LJ, Kallio MJ, Daum JR, Bolton M,
Manke IA, Yaffe MB, Stukenberg PT and Gorbsky GJ: Polo-like kinase
1 creates the tension-sensing 3F3/2 phosphoepitope and modulates
the association of spindle-checkpoint proteins at kinetochores.
Curr Biol. 15:1078–1089. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J,
Liu X, Li Z and Kong C: Comprehensive analysis of differentially
expressed genes associated with PLK1 in bladder cancer. BMC Cancer.
17:8612017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yu T, Li J, Yan M, Liu L, Lin H, Zhao F,
Sun L, Zhang Y, Cui Y, Zhang F, et al: MicroRNA-193a-3p and −5p
suppress the metastasis of human non-small-cell lung cancer by
downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway.
Oncogene. 34:413–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cao G, Dong W, Meng X, Liu H, Liao H and
Liu S: MiR-511 inhibits growth and metastasis of human
hepatocellular carcinoma cells by targeting PIK3R3. Tumour Biol.
36:4453–4459. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Klahan S, Wu MS, Hsi E, Huang CC, Hou MF
and Chang WC: Computational analysis of mRNA expression profiles
identifies the ITG family and PIK3R3 as crucial genes for
regulating triple negative breast cancer cell migration. BioMed Res
Int. 2014:5365912014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu K, Li X, Cao Y, Ge Y, Wang J and Shi
B: MiR-132 inhibits cell proliferation, invasion and migration of
hepatocellular carcinoma by targeting PIK3R3. Int J Oncol.
47:1585–1593. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhu Y, Zhao H, Rao M and Xu S:
MicroRNA-365 inhibits proliferation, migration and invasion of
glioma by targeting PIK3R3. Oncol Rep. 37:2185–2192. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang G, Yang X, Li C, Cao X, Luo X and Hu
J: PIK3R3 induces epithelial-to-mesenchymal transition and promotes
metastasis in colorectal cancer. Mol Cancer Ther. 13:1837–1847.
2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Calderón A, Ortiz-Espín A,
Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F and
Jiménez A: Thioredoxin (Trxo1) interacts with proliferating cell
nuclear antigen (PCNA) and its overexpression affects the growth of
tobacco cell culture. Redox Biol. 11:688–700. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yang Q, Ou C, Liu M, Xiao W, Wen C and Sun
F: NRAGE promotes cell proliferation by stabilizing PCNA in a
ubiquitin-proteasome pathway in esophageal carcinomas.
Carcinogenesis. 35:1643–1651. 2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kadariya Y, Cheung M, Xu J, Pei J,
Sementino E, Menges CW, Cai KQ, Rauscher FJ, Klein-Szanto AJ and
Testa JR: Bap1 Is a bona fide tumor suppressor: Genetic evidence
from mouse models carrying heterozygous germline Bap1 mutations.
Cancer Res. 76:2836–2844. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Dey A, Seshasayee D, Noubade R, French DM,
Liu J, Chaurushiya MS, Kirkpatrick DS, Pham VC, Lill JR, Bakalarski
CE, et al: Loss of the tumor suppressor BAP1 causes myeloid
transformation. Science. 337:1541–1546. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Field MG, Durante MA, Anbunathan H, Cai
LZ, Decatur CL, Bowcock AM, Kurtenbach S and Harbour JW: Punctuated
evolution of canonical genomic aberrations in uveal melanoma. Nat
Commun. 9:1162018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Smit KN, van Poppelen NM, Vaarwater J,
Verdijk R, van Marion R, Kalirai H, Coupland SE, Thornton S,
Farquhar N, Dubbink HJ, et al: Combined mutation and copy-number
variation detection by targeted next-generation sequencing in uveal
melanoma. Mod Pathol. 31:763–771. 2018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Pitcovski J, Shahar E, Aizenshtein E and
Gorodetsky R: Melanoma antigens and related immunological markers.
Crit Rev Oncol Hematol. 115:36–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Garfield EM, Walton KE, Quan VL,
VandenBoom T, Zhang B, Kong BY, Isales MC, Panah E, Kim G and
Gerami P: Histomorphologic spectrum of germline-related and
sporadic BAP1-inactivated melanocytic tumors. J Am Acad Dermatol.
79:525–534. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tetzlaff MT, Torres-Cabala CA,
Pattanaprichakul P, Rapini RP, Prieto VG and Curry JL: Emerging
clinical applications of selected biomarkers in melanoma. Clin
Cosmet Investig Dermatol. 8:35–46. 2015.PubMed/NCBI
|
59
|
Balasubramani A, Larjo A, Bassein JA,
Chang X, Hastie RB, Togher SM, Lähdesmäki H and Rao A:
Cancer-associated ASXL1 mutations may act as gain-of-function
mutations of the ASXL1-BAP1 complex. Nat Commun. 6:73072015.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Scotto L, Narayan G, Nandula SV,
Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright
JD, Pothuri B, Mansukhani M and Murty VV: Identification of copy
number gain and overexpressed genes on chromosome arm 20q by an
integrative genomic approach in cervical cancer: Potential role in
progression. Genes Chromosomes Cancer. 47:755–765. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Katoh M: Functional and cancer genomics of
ASXL family members. Br J Cancer. 109:299–306. 2013. View Article : Google Scholar : PubMed/NCBI
|
62
|
Katoh M: Functional proteomics of the
epigenetic regulators ASXL1, ASXL2 and ASXL3: A convergence of
proteomics and epigenetics for translational medicine. Expert Rev
Proteomics. 12:317–328. 2015. View Article : Google Scholar : PubMed/NCBI
|
63
|
Sahlberg KK, Hongisto V, Edgren H, Mäkelä
R, Hellström K, Due EU, Moen Vollan HK, Sahlberg N, Wolf M,
Børresen-Dale AL, et al: The HER2 amplicon includes several genes
required for the growth and survival of HER2 positive breast cancer
cells. Mol Oncol. 7:392–401. 2013. View Article : Google Scholar : PubMed/NCBI
|
64
|
Patel VN, Gokulrangan G, Chowdhury SA,
Chen Y, Sloan AE, Koyutürk M, Barnholtz-Sloan J and Chance MR:
Network signatures of survival in glioblastoma multiforme. PLOS
Comput Biol. 9:e10032372013. View Article : Google Scholar : PubMed/NCBI
|
65
|
Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing
T, Dong L, Tang E and Yang H: Over-expression of genes and proteins
of ubiquitin specific peptidases (USPs) and proteasome subunits
(PSs) in breast cancer tissue observed by the methods of RFDD-PCR
and proteomics. Breast Cancer Res Treat. 104:21–30. 2007.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Qi T, Zhang W, Luan Y, Kong F, Xu D, Cheng
G and Wang Y: Proteomic profiling identified multiple short-lived
members of the central proteome as the direct targets of the
addicted oncogenes in cancer cells. Mol Cell Proteomics. 13:49–62.
2014. View Article : Google Scholar : PubMed/NCBI
|