1
|
Barnes JL and Glass WFII: Renal
interstitial fibrosis: A critical evaluation of the origin of
myofibroblasts. Contrib Nephrol. 169:73–93. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hill NR, Fatoba ST, Oke JL, Hirst JA,
O'Callaghan CA, Lasserson DS and Hobbs FD: Global prevalence of
chronic kidney disease-A systematic review and meta-analysis. PLoS
One. 11:e01587652016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhao J, Wang L, Cao A, Jiang M, Chen X and
Peng W: Renal tubulointerstitial fibrosis: A review in animal
models. J Integr Nephrol Androl. 2:75–80. 2015. View Article : Google Scholar
|
4
|
Imig JD and Ryan MJ: Immune and
inflammatory role in renal disease. Compr Physiol. 3:957–976.
2013.PubMed/NCBI
|
5
|
Xiao X, Gaffar I, Guo P, Wiersch J,
Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota C
and Gittes GK: M2 macrophages promote beta-cell proliferation by
up-regulation of SMAD7. Proc Natl Acad Sci USA. 111:E1211–E1220.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chevalier RL, Forbes MS and Thornhill BA:
Ureteral obstruction as a model of renal interstitial fibrosis and
obstructive nephropathy. Kidney Int. 75:1145–1152. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Forbes MS, Thornhill BA and Chevalier RL:
Proximal tubular injury and rapid formation of atubular glomeruli
in mice with unilateral ureteral obstruction: A new look at an old
model. Am J Physiol Renal Physiol. 301:F110–F117. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Forbes MS, Thornhill BA, Minor JJ, Gordon
KA, Galarreta CI and Chevalier RL: Fight-or-flight: Murine
unilateral ureteral obstruction causes extensive proximal tubular
degeneration, collecting duct dilatation, and minimal fibrosis. Am
J Physiol Renal Physiol. 303:F120–F129. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ferrario F, Castiglione A, Colasanti G,
Barbiano di Belgioioso G, Bertoli S and D'Amico G: The detection of
monocytes in human glomerulonephritis. Kidney Int. 28:513–519.
1985. View Article : Google Scholar : PubMed/NCBI
|
10
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
Inflammatory processes in renal fibrosis. Nat Rev Nephrol.
10:493–503. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim MG, Kim SC, Ko YS, Lee HY, Jo SK and
Cho W: The role of M2 macrophages in the progression of chronic
kidney disease following acute kidney injury. PLoS One.
10:e01439612015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mosser DM and Edwards JP: Exploring the
full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969.
2008. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Guiteras R, Flaquer M and Cruzado JM:
Macrophage in chronic kidney disease. Clin Kidney J. 9:765–771.
2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guiteras R, Sola A, Flaquer M, Hotter G,
Torras J, Grinyó JM and Cruzado JM: Macrophage overexpressing NGAL
ameliorated kidney fibrosis in the UUO mice model. Cell Physiol
Biochem. 42:1945–1960. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Colin S, Chinetti-Gbaguidi G and Staels B:
Macrophage phenotypes in atherosclerosis. Immunol Rev. 262:153–166.
2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Flavell RA, Sanjabi S, Wrzesinski SH and
Licona-Limón P: The polarization of immune cells in the tumour
environment by TGFbeta. Nat Rev Immunol. 10:554–567. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Liew FY, Girard JP and Turnquist HR:
Interleukin-33 in health and disease. Nat Rev Immunol. 16:676–689.
2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ricardo SD, van Goor H and Eddy AA:
Macrophage diversity in renal injury and repair. J Clin Invest.
118:3522–3530. 2008. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Wynn TA and Ramalingam TR: Mechanisms of
fibrosis: Therapeutic translation for fibrotic disease. Nat Med.
18:1028–1040. 2012. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Lott JM, Sumpter TL and Turnquist HR: New
dog and new tricks: Evolving roles for IL-33 in type 2 immunity. J
Leukoc Biol. 97:1037–1048. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kurowska-Stolarska M, Hueber A, Stolarski
B and McInnes IB: Interleukin-33: A novel mediator with a role in
distinct disease pathologies. J Intern Med. 269:29–35. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Staurengo-Ferrari L, Trevelin SC, Fattori
V, Nascimento DC, de Lima KA, Pelayo JS, Figueiredo F, Casagrande
R, Fukada SY, Teixeira MM, et al: Interleukin-33 receptor (ST2)
deficiency improves the outcome of staphylococcus aureus-induced
septic arthritis. Front Immunol. 9:9622018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen WY, Chang YJ, Su CH, Tsai TH, Chen
SD, Hsing CH and Yang JL: Upregulation of Interleukin-33 in
obstructive renal injury. Biochem Biophys Res Commun.
473:1026–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pan B, Liu G, Jiang Z and Zheng D:
Regulation of renal fibrosis by macrophage polarization. Cell
Physiol Biochem. 35:1062–1069. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li D, Guabiraba R, Besnard AG, Komai-Koma
M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY,
McSharry C and Xu D: IL-33 promotes ST2-dependent lung fibrosis by
the induction of alternatively activated macrophages and innate
lymphoid cells in mice. J Allergy Clin Immunol. 134:1422–1432.e11.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Inada T, Yamanouchi Y, Jomura S, Sakamoto
S, Takahashi M, Kambara T and Shingu K: Effect of propofol and
isoflurane anaesthesia on the immune response to surgery.
Anaesthesia. 59:954–959. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang WL, Liu MY, Zhang ZC and Duan CY:
Effect of different anesthesia methods on erythrocyte immune
function in mice. Asian Pac J Trop Med. 6:995–998. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hohlbaum K, Bert B, Dietze S, Palme R,
Fink H and Thöne-Reineke C: Severity classification of repeated
isoflurane anesthesia in C57BL/6JRj mice-Assessing the degree of
distress. PLoS One. 12:e01795882017. View Article : Google Scholar : PubMed/NCBI
|
29
|
van Rooijen N and Hendrikx E: Liposomes
for specific depletion of macrophages from organs and tissues.
Methods Mol Biol. 605:189–203. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ferenbach DA, Sheldrake TA, Dhaliwal K,
Kipari TM, Marson LP, Kluth DC and Hughes J: Macrophage/monocyte
depletion by clodronate, but not diphtheria toxin, improves renal
ischemia/reperfusion injury in mice. Kidney Int. 82:928–933. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Aimo A, Migliorini P, Vergaro G, Franzini
M, Passino C, Maisel A and Emdin M: The IL-33/ST2 pathway,
inflammation and atherosclerosis: Trigger and target? Int J
Cardiol. 267:188–192. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sanson M, Distel E and Fisher EA: HDL
induces the expression of the M2 macrophage markers arginase 1 and
Fizz-1 in a STAT6-dependent process. PLoS One. 8:e746762013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Molofsky AB, Savage AK and Locksley RM:
Interleukin-33 in tissue homeostasis, injury, and inflammation.
Immunity. 42:1005–1019. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yu CC, Chien CT and Chang TC: M2
macrophage polarization modulates epithelial-mesenchymal transition
in cisplatin-induced tubulointerstitial fibrosis. Biomedicine
(Taipei). 6:52016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Biernacka A, Dobaczewski M and
Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors.
29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ramalingam TR, Gieseck RL, Acciani TH, M
Hart K, Cheever AW, Mentink-Kane MM, Vannella KM and Wynn TA:
Enhanced protection from fibrosis and inflammation in the combined
absence of IL-13 and IFN-γ. J Pathol. 239:344–354. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang S, Meng XM, Ng YY, Ma FY, Zhou S,
Zhang Y, Yang C, Huang XR, Xiao J, Wang YY, et al: TGF-β/Smad3
signalling regulates the transition of bone marrow-derived
macrophages into myofibroblasts during tissue fibrosis. Oncotarget.
7:8809–8822. 2016.PubMed/NCBI
|
38
|
Ikezumi Y, Suzuki T, Yamada T, Hasegawa H,
Kaneko U, Hara M, Yanagihara T, Nikolic-Paterson DJ and Saitoh A:
Alternatively activated macrophages in the pathogenesis of chronic
kidney allograft injury. Pediatr Nephrol. 30:1007–1017. 2015.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X,
Wang Y, Lee VW, Zheng G, Tan TK, et al: Discrete functions of M2a
and M2c macrophage subsets determine their relative efficacy in
treating chronic kidney disease. Kidney Int. 84:745–755. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Tecklenborg J, Clayton D, Siebert S and
Coley SM: The role of the immune system in kidney disease. Clin Exp
Immunol. 192:142–150. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yatim KM and Lakkis FG: A brief journey
through the immune system. Clin J Am Soc Nephrol. 10:1274–1281.
2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kurts C, Panzer U, Anders HJ and Rees AJ:
The immune system and kidney disease: Basic concepts and clinical
implications. Nat Rev Immunol. 13:738–753. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li L, Huang L, Ye H, Song SP, Bajwa A, Lee
SJ, Moser EK, Jaworska K, Kinsey GR, Day YJ, et al: Dendritic cells
tolerized with adenosine A2AR agonist attenuate acute kidney
injury. J Clin Invest. 122:3931–3942. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lai LW, Yong KC and Lien YH: Pharmacologic
recruitment of regulatory T cells as a therapy for ischemic acute
kidney injury. Kidney Int. 81:983–992. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sean Eardley K and Cockwell P: Macrophages
and progressive tubulointerstitial disease. Kidney Int. 68:437–455.
2005. View Article : Google Scholar : PubMed/NCBI
|