1
|
Mont MA and Hungerford DS: Non-traumatic
avascular necrosis of the femoral head. J Bone Joint Surg Am.
77:459–474. 1995. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sultan AA, Mohamed N, Samuel LT, Chughtai
M, Sodhi N, Krebs VE, Stearns KL, Molloy RM and Mont MA:
Classification systems of hip osteonecrosis: An updated review. Int
Orthop. 43:1089–1095. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cui L, Zhuang Q, Lin J, Jin J, Zhang K,
Cao L, Lin J, Yan S, Guo W, He W, et al: Multicentric epidemiologic
study on six thousand three hundred and ninety five cases of
femoral head osteonecrosis in China. Int Orthop. 40:267–276. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mont MA, Cherian JJ, Sierra RJ, Jones LC
and Lieberman JR: Nontraumatic osteonecrosis of the femoral head:
Where do we stand today? A ten-year update. J Bone Joint Surg Am.
97:1604–1627. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu XW, Zi Y, Xiang LB and Wang Y: Total
hip arthroplasty: areview of advances, advantages and limitations.
Int J Clin Exp Med. 8:27–36. 2015.PubMed/NCBI
|
6
|
Millikan PD, Karas V and Wellman SS:
Treatment of osteonecrosis of the femoral head with vascularized
bone grafting. Curr Rev Musculoskelet Med. 8:252–259. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Persiani P, De Cristo C, Graci J, Noia G,
Gurzi M and Villani C: Stage-related results in treatment of hip
osteonecrosis with core-decompression and autologous mesenchymal
stem cells. Acta Orthop Belg. 81:406–412. 2015.PubMed/NCBI
|
8
|
Zhao D, Cui D, Wang B, Tian F, Guo L, Yang
L, Liu B and Yu X: Treatment of early stage osteonecrosis of the
femoral head with autologous implantation of bone marrow-derived
and cultured mesenchymal stem cells. Bone. 50:325–330. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Mao Q, Jin H, Liao F, Xiao L, Chen D and
Tong P: The efficacy of targeted intraarterial delivery of
concentrated autologous bone marrow containing mononuclear cells in
the treatment of osteonecrosis of the femoral head: A five year
follow-up study. Bone. 57:509–516. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Papakostidis C, Tosounidis TH, Jones E and
Giannoudis PV: The role of ‘cell therapy’ in osteonecrosis of the
femoral head. A systematic review of the literature and
meta-analysis of 7 studies. Acta Orthop. 87:72–78. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Piuzzi NS, Chahla J, Schrock JB, LaPrade
RF, Pascual-Garrido C, Mont MA and Muschler GF: Evidence for the
Use of Cell-Based Therapy for the Treatment of Osteonecrosis of the
Femoral Head: A Systematic Review of the Literature. J
Arthroplasty. 32:1698–1708. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Piuzzi NS, Chahla J, Jiandong H, Chughtai
M, LaPrade RF, Mont MA, Muschler GF and Pascual-Garrido C: Analysis
of cell therapies used in clinical trials for the treatment of
osteonecrosis of the femoral head: A systematic review of the
literature. J Arthroplasty. 32:2612–2618. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xie XH, Wang XL, He YX, Liu Z, Sheng H,
Zhang G and Qin L: Promotion of bone repair by implantation of
cryopreserved bone marrow-derived mononuclear cells in a rabbit
model of steroid-associated osteonecrosis. Arthritis Rheum.
64:1562–1571. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Harada N, Watanabe Y, Sato K, Abe S,
Yamanaka K, Sakai Y, Kaneko T and Matsushita T: Bone regeneration
in a massive rat femur defect through endochondral ossification
achieved with chondrogenically differentiated MSCs in a degradable
scaffold. Biomaterials. 35:7800–7810. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ghanaati S, Booms P, Orlowska A, Kubesch
A, Lorenz J, Rutkowski J, Landes C, Sader R, Kirkpatrick C and
Choukroun J: Advanced platelet-rich fibrin: A new concept for
cell-based tissue engineering by means of inflammatory cells. J
Oral Implantol. 40:679–689. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shi W, Sun M, Hu X, Ren B, Cheng J, Li C,
Duan X, Fu X, Zhang J, Chen H and Ao Y: Structurally and
functionally optimized silk-fibroin-gelatin scaffold using 3d
printing to repair cartilage injury in vitro and in vivo. Adv
Mater. 29:2017. View Article : Google Scholar :
|
17
|
Guo X, Zheng Q, Kulbatski I, Yuan Q, Yang
S, Shao Z, Wang H, Xiao B, Pan Z and Tang S: Bone regeneration with
active angiogenesis by basic fibroblast growth factor gene
transfected mesenchymal stem cells seeded on porous beta-TCP
ceramic scaffolds. Biomed Mater. 1:93–99. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mebarki M, Coquelin L, Layrolle P,
Battaglia S, Tossou M, Hernigou P, Rouard H and Chevallier N:
Enhanced human bone marrow mesenchymal stromal cell adhesion on
scaffolds promotes cell survival and bone formation. Acta Biomater.
59:94–107. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang H, Zhang X, Hu X, Shao Z, Zhu J, Dai
L, Man Z, Yuan L, Chen H, Zhou C, et al: A functional biphasic
biomaterial homing mesenchymal stem cells for in vivo cartilage
regeneration. Biomaterials. 35:9608–9619. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Diez-Escudero A, Espanol M, Bonany M, Lu
X, Persson C and Ginebra MP: Heparinization of beta tricalcium
phosphate: Osteo-immunomodulatory effects. Adv Healthc Mater.
7:2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kasten P, Luginbuhl R, van Griensven M,
Barkhausen T, Krettek C, Bohner M and Bosch U: Comparison of human
bone marrow stromal cells seeded on calcium-deficient
hydroxyapatite, beta-tricalcium phosphate and demineralized bone
matrix. Biomaterials. 24:2593–2603. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shao Z, Zhang X, Pi Y, Wang X, Jia Z, Zhu
J, Dai L, Chen W, Yin L, Chen H, et al: Polycaprolactone
electrospun mesh conjugated with an MSC affinity peptide for MSC
homing in vivo. Biomaterials. 33:3375–3387. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ramaraju H, Miller SJ and Kohn DH:
Dual-functioning peptides discovered by phage display increase the
magnitude and specificity of BMSC attachment to mineralized
biomaterials. Biomaterials. 134:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Man Z, Sha D, Sun S, Li T, Li B, Yang G,
Zhang L, Wu C, Jiang P, Han X, et al: In vitro bioactivity study of
RGD-coated titanium alloy prothesis for revision total hip
arthroplasty. Biomed Res Int. 2016:86279782016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Deyle K, Kong XD and Heinis C: Phage
selection of cyclic peptides for application in research and drug
development. Acc Chem Res. 50:1866–1874. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tan Y, Tian T, Liu W, Zhu Z and C JY:
Advance in phage display technology for bioanalysis. Biotechnol J.
11:732–745. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gray BP and Brown KC: Combinatorial
peptide libraries: Mining for cell-binding peptides. Chem Rev.
114:1020–1081. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang Y, He B, Liu K, Ning L, Luo D, Xu K,
Zhu W, Wu Z, Huang J and Xu X: A novel peptide specifically binding
to VEGF receptor suppresses angiogenesis in vitro and in vivo.
Signal Transduct Target Ther. 2:170102017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Agarwal R and Garcia AJ: Biomaterial
strategies for engineering implants for enhanced osseointegration
and bone repair. Adv Drug Deliv Rev. 94:53–62. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Battiwalla M and Barrett AJ: Bone marrow
mesenchymal stromal cells to treat complications following
allogeneic stem cell transplantation. Tissue Eng Part B Rev.
20:211–217. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lu Y, Lu X, Li M, Chen X, Liu Y, Feng X,
Yu J, Zhang C, Niu D, Wang S, et al: Minimally invasive treatment
for osteonecrosis of the femoral head with angioconductive
bioceramic rod. Int Orthop. 42:1567–1573. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lobo SE, Glickman R, da Silva WN, Arinzeh
TL and Kerkis I: Response of stem cells from different origins to
biphasic calcium phosphate bioceramics. Cell Tissue Res.
361:477–495. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Stulajterova R, Medvecky L, Giretova M and
Sopcak T: Structural and phase characterization of bioceramics
prepared from tetracalcium phosphate-monetite cement and in vitro
osteoblast response. J Mater Sci Mater Med. 26:1832015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin J, Shao J, Juan L, Yu W, Song X, Liu
P, Weng W, Xu J and Mehl C: Enhancing bone regeneration by
combining mesenchymal stem cell sheets with β-TCP/COL-I scaffolds.
J Biomed Mater Res B Appl Biomater. 106:2037–2045. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li B, Liu Z, Yang J, Yi Z, Xiao W, Liu X,
Yang X, Xu W and Liao X: Preparation of bioactive β-tricalcium
phosphate microspheres as bone graft substitute materials. Mater
Sci Eng C Mater Biol App. 70:1200–1205. 2017. View Article : Google Scholar
|
36
|
Masaoka T, Yoshii T, Yuasa M, Yamada T,
Taniyama T, Torigoe I, Shinomiya K, Okawa A, Morita S and Sotome S:
Bone defect regeneration by a combination of a β-tricalcium
phosphate scaffold and bone marrow stromal cells in a non-human
primate model. Open Biomed Eng J. 10:2–11. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Oe K, Miwa M, Nagamune K, Sakai Y, Lee SY,
Niikura T, Iwakura T, Hasegawa T, Shibanuma N, Hata Y, et al:
Nondestructive evaluation of cell numbers in bone marrow stromal
cell/beta-tricalcium phosphate composites using ultrasound. Tissue
sEng Part C Methods. 16:347–353. 2010. View Article : Google Scholar
|
38
|
Li B, Hu R, Sun L, Luo R, Zhao J and Tian
X: A CARE-compliant article: Biomechanics of treating early-stage
femoral-head osteonecrosis by using a beta-tricalcium phosphate
bioceramic rod system: A 3-dimensional finite-element analysis.
Medicine (Baltimore). 97:e108082018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kawai T, Shanjani Y, Fazeli S, Behn AW,
Okuzu Y, Goodman SB and Yang YP: Customized, degradable,
functionally graded scaffold for potential treatment of early stage
osteonecrosis of the femoral head. J Orthop Res. 36:1002–1011.
2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pi Y, Zhang X, Shi J, Zhu J, Chen W, Zhang
C, Gao W, Zhou C and Ao Y: Targeted delivery of non-viral vectors
to cartilage in vivo using a chondrocyte-homing peptide identified
by phage display. Biomaterials. 32:6324–6332. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang G, Man Z, Zhang N, Xin H, Li Y, Sun T
and Sun S: Biopanning of mouse bone marrow mesenchymal stem cell
affinity for cyclic peptides. Mol Med Rep. 19:407–413.
2019.PubMed/NCBI
|
42
|
Wang G, Man Z, Xin H, Li Y, Wu C and Sun
S: Enhanced adhesion and proliferation of bone marrow mesenchymal
stem cells on betatricalcium phosphate modified by an affinity
peptide. Mol Med Rep. 19:375–381. 2019.PubMed/NCBI
|
43
|
Bhatnagar RS, Qian JJ, Wedrychowska A,
Sadeghi M, Wu YM and Smith N: Design of biomimetic habitats for
tissue engineering with P-15, a synthetic peptide analogue of
collagen. Tissue Eng. 5:53–65. 1999. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lutolf MP and Hubbell JA: Synthetic
biomaterials as instructive extracellular microenvironments for
morphogenesis in tissue engineering. Nat Biotechnol. 23:47–55.
2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Weber D, Kotzsch A, Nickel J, Harth S,
Seher A, Mueller U, Sebald W and Mueller TD: A silent H-bond can be
mutationally activated for high-affinity interaction of BMP-2 and
activin type IIB receptor. BMC Struct Biol. 7:62007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Collier JH and Segura T: Evolving the use
of peptides as components of biomaterials. Biomaterials.
32:4198–4204. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Man Z, Li T, Zhang L, Yuan L, Wu C, Li P,
Sun S and Li W: E7 peptide-functionalized Ti6Al4V alloy for BMSC
enrichment in bone tissue engineering. Am J Transl Res.
10:2480–2490. 2018.PubMed/NCBI
|
48
|
Ruoslahti E and Pierschbacher MD:
Arg-Gly-Asp: A versatile cell recognition signal. Cell. 44:517–518.
1986. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hersel U, Dahmen C and Kessler H: RGD
modified polymers: Biomaterials for stimulated cell adhesion and
beyond. Biomaterials. 24:4385–4415. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang H, Lin CY and Hollister SJ: The
interaction between bone marrow stromal cells and RGD-modified
three-dimensional porous polycaprolactone scaffolds. Biomaterials.
30:4063–4069. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Valeur E, Gueret SM, Adihou H,
Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN and
Plowright AT: New modalities for challenging targets in drug
discovery. Angew Chem Int Ed Engl. 56:10294–10323. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zorzi A, Deyle K and Heinis C: Cyclic
peptide therapeutics: Past, present and future. Curr Opin Chem
Biol. 38:24–29. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Salmasi S, Nayyer L, Seifalian AM and
Blunn GW: Nanohydroxyapatite effect on the degradation,
osteoconduction and mechanical properties of polymeric bone tissue
engineered scaffolds. Open Orthop J. 10:900–919. 2016. View Article : Google Scholar : PubMed/NCBI
|