1
|
Lee BC and Lee J: Cellular and molecular
players in adipose tissue inflammation in the development of
obesity-induced insulin resistance. Biochim Biophys Acta.
1842:446–462. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dehwah MA, Xu A and Huang Q: MicroRNAs and
type 2 diabetes/obesity. J Genet Genomics. 39:11–18. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Trajkovski M, Hausser J, Soutschek J, Bhat
B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107
regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu
JX, Hu YN, Wu DM, Liu Y, Yan TT, et al: Downregulation of miR-181a
upregulates sirtuin-1 (SIRT1) and improves hepatic insulin
sensitivity. Diabetologia. 55:2032–2043. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fu X, Dong B, Tian Y, Lefebvre P, Meng Z,
Wang X, Pattou F, Han W, Wang X, Lou F, et al: MicroRNA-26a
regulates insulin sensitivity and metabolism of glucose and lipids.
J Clin Invest. 125:2497–2509. 2015. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Higuchi C, Nakatsuka A, Eguchi J,
Teshigawara S, Kanzaki M, Katayama A, Yamaguchi S, Takahashi N,
Murakami K, Ogawa D, et al: Identification of circulating miR-101,
miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism.
64:489–497. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kornfeld JW, Baitzel C, Konner AC,
Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM,
Knippschild U, et al: Obesity-induced overexpression of miR-802
impairs glucose metabolism through silencing of Hnf1b. Nature.
494:111–115. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Matsuzawa-Nagata N, Takamura T, Ando H,
Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto
K and Kaneko S: Increased oxidative stress precedes the onset of
high-fat diet-induced insulin resistance and obesity. Metabolism.
57:1071–1077. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Evans JL, Maddux BA and Goldfine ID: The
molecular basis for oxidative stress-induced insulin resistance.
Antioxid Redox Signal. 7:1040–1052. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Manno CS, Pierce GF, Arruda VR, Glader B,
Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, et al:
Successful transduction of liver in hemophilia by AAV-Factor IX and
limitations imposed by the host immune response. Nat Med.
12:342–347. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Grimm D and Kay MA: Therapeutic short
hairpin RNA expression in the liver: Viral targets and vectors.
Gene Ther. 13:563–575. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bagul PK, Middela H, Matapally S, Padiya
R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S and Banerjee
SK: Attenuation of insulin resistance, metabolic syndrome and
hepatic oxidative stress by resveratrol in fructose-fed rats.
Pharmacol Res. 66:260–268. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Katz A, Nambi SS, Mather K, Baron AD,
Follmann DA, Sullivan G and Quon MJ: Quantitative insulin
sensitivity check index: A simple, accurate method for assessing
insulin sensitivity in humans. J Clin Endocrinol Metab.
85:2402–2410. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Benov L, Sztejnberg L and Fridovich I:
Critical evaluation of the use of hydroethidine as a measure of
superoxide anion radical. Free Radic Biol Med. 25:826–831. 1998.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Das M, Das S, Lekli I and Das DK: Caveolin
induces cardioprotection through epigenetic regulation. J Cell Mol
Med. 16:888–895. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pessin JE and Saltiel AR: Signaling
pathways in insulin action: Molecular targets of insulin
resistance. J Clin Invest. 106:165–169. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sone H, Takahashi A, Iida K and Yamada N:
Disease model: Hyperinsulinemia and insulin resistance. Part
B-polygenic and other animal models. Trends Mol Med. 7:373–376.
2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Perry CG and Wright DC: Challenging dogma:
Is hepatic lipid accumulation in type 2 diabetes due to
mitochondrial dysfunction? J Physiol. 594:4093–4094. 2016.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Han X, Luo Y, Ren Q, Zhang X, Wang F, Sun
X, Zhou X and Ji L: Implication of genetic variants near SLC30A8,
HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type
2 diabetes in a Chinese population. Bmc Med Genet. 11:812010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Erdemir F, Atilgan D, Markoc F, Boztepe O,
Suha-Parlaktas B and Sahin S: The effect of diet induced obesity on
testicular tissue and serum oxidative stress parameters. Actas Urol
Esp (Spanish). 36:153–159. 2012. View Article : Google Scholar
|
22
|
Gujjala S, Putakala M, Gangarapu V, Nukala
S, Bellamkonda R, Ramaswamy R and Desireddy S: Protective effect of
Caralluma fimbriata against high-fat diet induced testicular
oxidative stress in rats. Biomed Pharmacother. 83:167–176. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Feng X, Yu W, Li X, Zhou F, Zhang W, Shen
Q, Li J, Zhang C and Shen P: Apigenin, a modulator of PPARγ,
attenuates HFD-induced NAFLD by regulating hepatocyte lipid
metabolism and oxidative stress via Nrf2 activation. Biochem
Pharmacol. 136:136–149. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pan ZG and An XS: SARM1 deletion restrains
NAFLD induced by high fat diet (HFD) through reducing inflammation,
oxidative stress and lipid accumulation. Biochem Biophys Res
Commun. 498:416–423. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Styskal J, Van Remmen H, Richardson A and
Salmon AB: Oxidative stress and diabetes: What can we learn about
insulin resistance from antioxidant mutant mouse models? Free Radic
Biol Med. 52:46–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang ZF, Lu J, Zheng YL, Wu DM, Hu B,
Shan Q, Cheng W, Li MQ and Sun YY: Purple sweet potato color
attenuates hepatic insulin resistance via blocking oxidative stress
and endoplasmic reticulum stress in high-fat-diet-treated mice. J
Nutr Biochem. 24:1008–1018. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sankar P, Zachariah B, Vickneshwaran V,
Jacob SE and Sridhar MG: Amelioration of oxidative stress and
insulin resistance by soy isoflavones (from Glycine max) in
ovariectomized Wistar rats fed with high fat diet: The molecular
mechanisms. Exp Gerontol. 63:67–75. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Carlson CJ, Koterski S, Sciotti RJ,
Poccard GB and Rondinone CM: Enhanced basal activation of
mitogen-activated protein kinases in adipocytes from type 2
diabetes: Potential role of p38 in the downregulation of GLUT4
expression. Diabetes. 52:634–341. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bloch-Damti A and Bashan N: Proposed
mechanisms for the induction of insulin resistance by oxidative
stress. Antioxid Redox Signal. 7:1553–1567. 2005. View Article : Google Scholar : PubMed/NCBI
|