Cholinesterase inhibitors as Alzheimer's therapeutics (Review)
- Authors:
- Kamlesh Sharma
-
Affiliations: Department of Chemistry, Faculty of Physical Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505, India - Published online on: June 11, 2019 https://doi.org/10.3892/mmr.2019.10374
- Pages: 1479-1487
This article is mentioned in:
Abstract
Khachaturian ZS: Diagnosis of alzheimer's disease. Arch Neurol. 42:1097–1105. 1985. View Article : Google Scholar : PubMed/NCBI | |
Kuhn D: New horizons. Contemporary longterm care. 26:25–26. 2003.PubMed/NCBI | |
Cheng ST: Cognitive reserve and the prevention of dementia: The role of physical and cognitive activities. Curr Psychiatry Rep. 18:852016. View Article : Google Scholar : PubMed/NCBI | |
Silman I and Sussman JL: Acetylcholinesterase: Classical and non-classical functions and pharmacology. Curr Opin Pharmacol. 5:293–302. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bartus RT, Dean RL III, Beer B and Lippa AS: The cholinergic hypothesis of geriatric memory dysfunction. Science. 217:408–417. 1982. View Article : Google Scholar : PubMed/NCBI | |
Tabet N: Acetylcholinesterase inhibitors for alzheimer's disease: Anti-inflammatories in acetylcholine clothing. Age Ageing. 35:336–338. 2008. View Article : Google Scholar | |
Karran E, Mercken M and De Strooper B: The amyloid cascade hypothesis for Alzheimer's disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov. 10:698–712. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Li YP, He Y, Huang SL, Tan JH, Ou TM, Li D, Gu LQ and Huang ZS: Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation. Bioorg Med Chem. 19:763–770. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Zhao LZ, Zhao HT, Huang SL, Zhong SM, Qin JK, Chen ZF, Huang ZS and Liang H: Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur J Med Chem. 46:4970–4979. 2011. View Article : Google Scholar : PubMed/NCBI | |
Camps P, Formosa X, Galdeano C, Muñoz-Torrero D, Ramírez L, Gómez E, Isambert N, Lavilla R, Badia A, Clos MV, et al: Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase-and beta-amyloid-directed anti-Alzheimer compounds. J Med Chem. 52:5365–5379. 2009. View Article : Google Scholar : PubMed/NCBI | |
Camps P, Formosa X, Galdeano C, Gómez T, Muñoz-Torrero D, Scarpellini M, Viayna E, Badia A, Clos MV, Camins A, et al: Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem. 51:3588–3598. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Pandey A, Tyagi A and Mohan GA: Computational analysis of Alzheimer's disease drug targets. Curr Res Inf Pharm Sci. 11:1–10. 2010. | |
Perl DP: Neuropathology of Alzheimer's disease. Mt Sinai J Med. 77:32–42. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takashima A: Tau aggregation is a therapeutic target for Alzheimer's disease. Curr Alzheimer Res. 7:665–669. 2010. View Article : Google Scholar : PubMed/NCBI | |
Anand K and Sabbagh M: Early investigational drugs targeting tau protein for the treatment of Alzheimer's disease. Expert Opin Investig Drugs. 24:1355–1360. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iqbal K, Gong CX and Liu F: Microtubule-associated protein tau as a therapeutic target in Alzheimer's disease. Expert Opin Ther Targets. 18:307–318. 2014. View Article : Google Scholar : PubMed/NCBI | |
Noble W, Hanger DP, Miller CC and Lovestone S: The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol. 4:832013. View Article : Google Scholar : PubMed/NCBI | |
Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C, Barulli MR, Bellomo A, Pilotto A, et al: Tau-centric targets and drugs in clinical development for the treatment of Alzheimer's disease. Biomed Res Int. 2016:32459352016. View Article : Google Scholar : PubMed/NCBI | |
Congdon EE and Sigurdsson EM: Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 14:399–415. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russo P, Frustaci A, Del Bufalo A, Fini M and Cesario A: Multitarget drugs of plants origin acting on Alzheimer's disease. Curr Med Chem. 20:1686–1693. 2013. View Article : Google Scholar : PubMed/NCBI | |
Azam F, Amer AM, Abulifa AR and Elzwawi MM: Ginger components as new leads for the design and development of novel multi-targeted anti-alzheimer's drugs: A computational investigation. Drug Des Devel Ther. 8:2045–2059. 2014. View Article : Google Scholar : PubMed/NCBI | |
Silman I and Sussman JL: Acetylcholinesterase: How is structure related to function? Chem Biol Interact. 175:3–10. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lotta B: Targeting acetylcholinesterase: Identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One. 6:e260392011. View Article : Google Scholar : PubMed/NCBI | |
Tripathi A: Acetylcholinsterase: A versatile enzyme of nervous system. Ann Neurosci. 15:106–111. 2008. View Article : Google Scholar | |
López-Arrieta JM and Schneider L: Metrifonate for alzheimer's disease. Cochrane Database Sys Rev. 2:1–40. 2006. | |
Tougu V: Acetylcholinesterase: Mechanism of catalysis and inhibition. Curr Med Chem CNS Agents. 1:155–170. 2001. | |
Zhang Y, Kua J and McCammon JA: Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study. J Am Chem Soc. 124:10572–10577. 2002. View Article : Google Scholar : PubMed/NCBI | |
Weinstock M: Selectivity of cholinesterase inhibition. CNS Drugs. 12:307–323. 1999. View Article : Google Scholar | |
Ogura H, Kosasa T, Kuriya Y and Yamanishi Y: Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol. 22:609–613. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rogers SL and Friedhoff LT: The efficacy and safety of donepezil in patients with Alzheimer's disease: Results of a US multicentre randomised double blind placebo-controlled trial The donepezil study group. Dementia. 7:293–303. 1996.PubMed/NCBI | |
Olin J and Schneider L: Galantamine for Alzheimer's disease. Cochrane Database Syst Rev. 4:CD0017472001. | |
Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL and Silman I: Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochem. 41:3555–3564. 2002. View Article : Google Scholar | |
Holmstedt B: Plants in the Development of Modern Medicine. Swain T: Cambridge University Press; Cambridge, MA: p303 and references cited herein. 1972, View Article : Google Scholar | |
Thal LJ, Fuld PA, Masur DM and Sharpless NS: Oral physostigmine and lecithin improve memory in alzheimer disease. Ann Neurol. 13:491–496. 1983. View Article : Google Scholar : PubMed/NCBI | |
Coelho F and Birks J: Physostigmine for Alzheimer's disease. Cochrane Database Syst Rev. 2:CD0014992001. | |
Karis JH, Nastuk WL and Katz RL: The action of tacrine on neuromuscular transmission: A comparison with hexafluorenium. Brit J Anaesth. 38:762–774. 1966. View Article : Google Scholar : PubMed/NCBI | |
Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I and Sussman JL: Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci USA. 90:9031–9035. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Bachiller MI, Pérez C, González-Muñoz GC, Conde S, López MG, Villarrova M, García AG and Rodríguez-Franco MI: Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer's disease, with neuroprotective, cholinergic, antioxidant and coppercomplexing properties. J Med Chem. 53:4927–4937. 2010. View Article : Google Scholar : PubMed/NCBI | |
Farlow M, Gracon SI, Hershey LA, Lewis KW, Sadowsky CH and Dolan-Ureno J: A controlled trial of tacrine in Alzheimer's disease. The tacrine study group. JAMA. 268:2523–2529. 1992. View Article : Google Scholar : PubMed/NCBI | |
Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI and Lewis KW: Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA. 271:992–998. 1994. View Article : Google Scholar : PubMed/NCBI | |
Rogers SL, Farlow MR, Doody RS, Mohs R and Friedhoff LT: A 24 week double blind placebo controlled trial of donepezil in patients with Alzheimer's disease. Donepezil study group. Neurology. 50:136–145. 1998. View Article : Google Scholar : PubMed/NCBI | |
Jacobson SA and Sabbagh MN: Donepezil: Potential neuroprotective and disease-modifying effects. Expert Opin Drug Metab Toxicol. 4:1363–1369. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kryger G, Silman I and Sussman JL: Structure of acetylcholinesterase complexed with E2020 (Aricept): Implications for the design of new anti-Alzheimer drugs. Struct. 7:297–307. 1999. View Article : Google Scholar | |
Inglis F: The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int J Clin Pract Suppl. 127:45–63. 2002. | |
Onor ML, Trevisiol M and Aguglia E: Rivastigmine in the treatment of alzheimer's disease: An update. Clin Interv Aging. 2:17–32. 2007. View Article : Google Scholar : PubMed/NCBI | |
Corey-Bloom J, Anand R and Veach J: A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. Int J Geriatr Psychopharmacol. 1:55–65. 1998. | |
Fraser MD, Davies JR and Chang X: New gold in them thar hills: Testing a novel supply route for plant-derived galanthamine. J Alzheimers Dis. 55:1321–1325. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Souza FM, Busquet N, Blatner M, Maclean KN and Restrepo D: Galantamine improves olfactory learning in the Ts65Dn mouse model of down syndrome. Sci Rep. 1:1372011. View Article : Google Scholar : PubMed/NCBI | |
Pernov KG: Nivalin and its curative effect on disease of the nervous system. Psychiatr Neurol Med Psychol (Leipz). 13:416–420. 1961.(In German). PubMed/NCBI | |
Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S and Ding C: A 5-month, randomized, placebocontrolled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 54:2269–2276. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mehta M, Adem A and Sabbagh M: New acetylcholinesterase inhibitors for Alzheimer's disease. Int J Alzheimers Dis. 2012:7289832012.PubMed/NCBI | |
Nordgren I, Bengtsson E, Holmstedt B and Pettersson BM: Levels of metrifonate and dichlorvos in plasma and erythrocytes during treatment of schistosomiasis with Bilarcil. Acta Pharmacol Toxicol (Copenh). 49 (Suppl 5):S79–S86. 1981. View Article : Google Scholar | |
Cummings JL, Cyrus PA, Bieber F, Mas J, Orazem J and Gulanski B: Metrifonate treatment of the cognitive deficits of Alzheimer's disease. The metrifonate study group. Neurology. 50:1214–1221. 1998. View Article : Google Scholar : PubMed/NCBI | |
Klein J: Phenserine. Exp Opin Investig Drugs. 16:1087–1097. 2007. View Article : Google Scholar | |
Greig NH, De Micheli E, Holloway HW, Yu QS, Utsuki T, Perry TA, Brossi A, Ingram DK, Deutsch J, Lahiri DK and Soncrant TT: The experimental Alzheimer drug phenserine: Preclinical pharmacokinetics and pharmacodynamics. Acta Neurol Scand Suppl. 176:74–84. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thatte U: Phenserine Axonyx. Curr Opin Investig Drugs. 6:729–739. 2005.PubMed/NCBI | |
Winblad B, Giacobini E, Frölich L, Friedhoff LT, Bruinsma G, Becker RE and Greig NH: Phenserine efficacy in Alzheimer's disease. J Alzheimer's Dis. 22:1201–1208. 2010. View Article : Google Scholar | |
Tweedie D, Fukui K, Li Y, Yu QS, Barak S, Tamargo IA, Rubovitch V, Holloway HW, Lehrmann E, Wood WH III, et al: Cognitive impairments induced by concussive mild traumatic brain injury in mouse are ameliorated by treatment with phenserine via multiple non-cholinergic and cholinergic mechanisms. PLoS One. 11:e01564932016. View Article : Google Scholar : PubMed/NCBI | |
Becker RE, Greig NH, Lahiri DK, Bledsoe J, Majercik S, Ballard C, Aarsland D, Schneider LS, Flanagan D, Govindarajan R, et al: (−)-Phenserine and inhibiting apoptosis: In pursuit of a novel intervention for Alzheimer's disease. Curr Alzheimer Res. 15:883–891. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Yu QS, Zhan M, Parrish D, Deschamps JR, Kulkarni SS, Holloway HW, Alley GM, Lahiri DK, Brossi A and Greig NH: Novel anticholinesterases based on the molecular skeletons of furobenzofuran and methanobenzodioxepine. J Med Chem. 48:986–994. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu QS, Holloway HW, Luo W, Lahiri DK, Brossi A and Greig NH: Long-acting anticholinesterases for myasthenia gravis: Synthesis and activities of quaternary phenylcarbamates of neostigmine, pyridostigmine and physostigmine. Bioorg Med Chem. 18:4687–4693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kamal MA, Greig NH, Alhomida AS and Al-Jafari AA: Kinetics of human acetylcholinesterase inhibition by the novel experimental Alzheimer therapeutic agent, tolserine. Biochem Pharmacol. 60:561–570. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fürst S, Friedmann T, Bartolini A, Bartolini R, Aiello-Malmberg P, Galli A, Somogy GT and Knoll J: Direct evidence that eseroline possesses morphine-like effects. Eur J Pharmacol. 83:233–241. 1982. View Article : Google Scholar : PubMed/NCBI | |
Galli A, Renzi G, Grazzini E, Bartolini R, Aiello-Malmberg P and Bartolini A: Reversible inhibition of acetylcholinesterase by eseroline, an opioid agonist structurally related to physostigmine (eserine) and morphine. Biochemical Pharmac. 31:1233–1238. 1982. View Article : Google Scholar | |
Zhan ZJ, Bian HL, Wang JW and Shan WG: Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities. Bioorg Med Chem Letts. 20:1532–1534. 2010. View Article : Google Scholar | |
Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY and Zhu D: Isolation and characterization of endophytic huperzineA-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol. 38:1267–1278. 2011. View Article : Google Scholar : PubMed/NCBI | |
Camps P, El Achab R, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M and Luque FJ: New tacrine-huperzine A hybrids (huprines): Highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of alzheimer's disease. J Med Chem. 43:4657–4666. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dvir H, Jiang HL, Wong DM, Harel M, Chetrit M, He XC, Jin GY, Yu GL, Tang XC, Silman I, et al: X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (−)-huperzine B: Structural evidence for an active site rearrangement. Biochem. 41:10810–10818. 2002. View Article : Google Scholar | |
Li J, Wu HM, Zhou RL, Liu GJ and Dong BR: Huperzine A for alzheimer's disease. Cochrane Database of Syst Rev. CD0055922008. | |
Guo AJ, Xie HQ, Choi RC, Zheng KY, Bi CW, Xu SL, Dong TTX and Tsim KW: Galangin, a flavonol derived from Rhizoma Alpiniae officinarum, inhibits acetylcholinesterase activity in vitro. Chem Biol Interact. 187:246–248. 2010. View Article : Google Scholar : PubMed/NCBI | |
de Paula AA, Martins JB, dos Santos ML, Nascente Lde C, Romeiro LA, Areas TF, Vieira KS, Gambôa NF, Castro NG and Gargano R: New potential AChE inhibitor candidates. Eur J Med Chem. 44:3754–3759. 2009. View Article : Google Scholar : PubMed/NCBI | |
Taiwo EA: Cashew nut shell oil - A renewable and reliable petrochemical feedstock. Advances in Petrochemicals. Patel V: 2015, View Article : Google Scholar | |
Piazzi L, Rampa A, Bisi A, Gobbi S, Belluti F, Cavalli A, Bartolini M, Andrisano V, Valenti P and Recanatini M: 3-(4-[[Benzyl (methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: A dual function lead for Alzheimer's disease therapy. J Med Chem. 46:2279–2282. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rizzo S, Bartolini M, Ceccarini L, Piazzi L, Gobbi S, Cavalli A, Recanatini M, Andrisano V and Rampa A: Targeting Alzheimer's disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorg Med Chem. 18:1749–1760. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pi R, Xuexuan MX, Chao X, Cheng Z, Liu M, Duan X, Ye M, Chen X, Mei Z, Liu P, et al: Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer's disease-associated pathogenesis in vitro and in vivo. PLoS One. 7:e319212012. View Article : Google Scholar : PubMed/NCBI | |
Tipton KF, Boyce S, O'Sullivan J, Davey GP and Healy J: Monoamine oxidases: Certainties and uncertainties. Curr Med Chem. 11:1965–1982. 2004. View Article : Google Scholar : PubMed/NCBI | |
Edmondson DE, Mattevi A, Binda C, Li M and Hubálek F: Structure and mechanism of monoamine oxidase. Curr Med Chem. 11:1983–1993. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pachón-Angona I, Refouvelet B, Andrýs R, Martin H, Luzet V, Iriepa I, Moraleda I, Diez-Iriepa D, Oset-Gasque MJ, Marco-Contelles J, et al: Donepezil + chromone + melatonin hybrids as promising agents for Alzheimer's disease therapy. J Enzyme Inhib Med Chem. 34:479–489. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chufarova N, Czarnecka K, Skibiński R, Cuchra M, Majsterek I and Szymański P: New tacrine-acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer's disease. Arch Pharm Chem Life Sci. 351:e18000502018. View Article : Google Scholar | |
Lopes JPB, Silva L, da Costa Franarin G, Antonio Ceschi M, Seibert Lüdtke D, Ferreira Dantas R, de Salles CMC, Paes Silva-Jr F, Roberto Senger M, Alvim Guedes I and Emmanuel Dardenne L: Design synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives. Bioorg Med Chem. 26:5566–5577. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Yang H, Chen Y, Lin H, Li Q, Mo J, Bian Y, Pei Y and Sun H: Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease. J Enzym Inhib Med Chem. 33:496–506. 2018. View Article : Google Scholar | |
Korabecny J, Musilek K, Holas O, Binder J, Zemek F, Marek J, Pohanka M, Opletalova V, Dohnal V and Kuca K: Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg Med Chem Lett. 20:6093–6105. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ali MA, Yar MS, Hasan MZ, Ahsan MJ and Pandian S: Design, synthesis and evaluation of novel 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-2-indenyl-3,4-substituted phenyl methanone analogues. Bioorg Med Chem Letts. 19:5075–5077. 2009. View Article : Google Scholar | |
De la Torre P, Saavedra LA, Caballero J, Quiroga J, Alzate-Morales JH, Cabrera MG and Trilleras J: A novel class of selective acetylcholinesterase inhibitors: Synthesis and evaluation of (E)-2-(benzo d]thiazol-2-yl)-3-heteroarylacrylonitriles. Molecules. 17:12072–12085. 2012. View Article : Google Scholar : PubMed/NCBI | |
Weinreb O, Amit T, Bar-Am O and Youdim MBH: A novel anti-Alzheimer's disease drug, ladostigil, neuroprotective, multimodal brain-selective monoamine oxidase and cholinesterase inhibitor. Int Rev Neurobiol. 100:191–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A and Firuzi O: Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg Chem. 84:363–371. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rastegari A, Nadri H, Mahdavi M, Moradi A, Mirfazli SS, Edraki N, Moghadam FH, Larijani B, Akbarzadeh T and Saeedi M: Design, synthesis and anti-Alzheimer's activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg Chem. 83:391–1401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shah MS, Khan SU, Ejaz SA, Afridi S, Rizvi SUF, Najam-ul-Haq M and Iqbal J: Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones. Biochem Biophys Res Commun. 482:615–624. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reis J, Cagide F, Valencia ME, Teixeira J, Bagetta D, Pérez C, Uriarte E, Oliveira PJ, Ortuso F, Alcaro S, et al: Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur J Med Chem. 158:781–800. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Q, He S, Chen Y, Feng F, Qu W and Sun H: Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem. 158:463–477. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie SS, Wang XB, Li JY, Yang L and Kong LY: Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease. Eur J Med Chem. 64:540–553. 2013. View Article : Google Scholar : PubMed/NCBI | |
Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P, Stefanachi A, Cellamare S and Carotti A: Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg Med Chem. 21:146–152. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khoobi M, Alipour M, Moradi A, Sakhteman A, Nadri H, Razavi SF, Ghandi M, Foroumadi A and Shafiee A: Design, synthesis, docking study and biological evaluation of some novel tetrahydrochromeno 3′,4′:5,6] pyrano 2,3-b] quinolin-6 (7H)-one derivatives against acetyland butyrylcholinesterase. Eur J Med Chem. 68:291–300. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin P, Kim JA, Choi DY, Lee YJ, Jung HS and Hong JT: Anti-inflammatory and anti-amyloidogenic effects of a small molecule, 2,4-bis(p-hydroxyphenyl)-2-butenal in Tg2576 Alzheimer's disease mice model. J Neuroinflammation. 10:767–779. 2013. View Article : Google Scholar | |
Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E and Bolognesi ML: A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 7:32018. View Article : Google Scholar : PubMed/NCBI |