Open Access

Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons

  • Authors:
    • Feng Xian
    • Qifang Li
    • Zuping Chen
  • View Affiliations

  • Published online on: June 21, 2019     https://doi.org/10.3892/mmr.2019.10412
  • Pages: 1583-1592
  • Copyright: © Xian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Propofol is a general anesthetic used in surgical operations. Phosphoprotein enriched in astrocytes 15(PEA15) was initially identified in astrocytes. The present study examined the role of PEA15 in the damage induced by propofol in hippocampal neurons. A model of hippocampal neuron damage was established using 50 µmol/l propofol. Cell viability, proliferation and apoptosis of hippocampal neurons were tested by Cell Counting Kit‑8 and flow cytometry. Western blotting and reverse transcription‑quantitative polymerase chain reaction analysis were performed to measure the expression levels of PEA15, and additional factors involved in apoptosis or in the signaling pathway downstream of PEA15. The present results suggested that propofol significantly decreased PEA15 expression levels in hippocampal neurons. Furthermore, overexpression of PEA15 significantly increased the cell viability and cell proliferation of cells treated with propofol. Additionally, PEA15 overexpression decreased apoptosis, which was promoted by propofol. Treatment with propofol significantly decreased the protein expression levels of pro‑caspase‑3, B‑cell lymphoma-2, phosphorylated extracellular signal‑regulated kinases (ERK)1/2, ribosomal S6 kinase 2 (RSK2) and phosphorylated cAMP responsive element binding protein 1 (CREB1). However, propofol upregulated active caspase‑3 and Bax expression levels. Notably, PEA15 overexpression was able to reverse the effects of propofol. Collectively, overexpression of PEA15 was able to attenuate the neurotoxicity of propofol in rat hippocampal neurons by increasing proliferation and repressing apoptosis via upregulation of the ERK‑CREB‑RSK2 signaling pathway.
View Figures
View References

Related Articles

Journal Cover

August-2019
Volume 20 Issue 2

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Xian F, Li Q and Chen Z: Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons. Mol Med Rep 20: 1583-1592, 2019.
APA
Xian, F., Li, Q., & Chen, Z. (2019). Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons. Molecular Medicine Reports, 20, 1583-1592. https://doi.org/10.3892/mmr.2019.10412
MLA
Xian, F., Li, Q., Chen, Z."Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons". Molecular Medicine Reports 20.2 (2019): 1583-1592.
Chicago
Xian, F., Li, Q., Chen, Z."Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons". Molecular Medicine Reports 20, no. 2 (2019): 1583-1592. https://doi.org/10.3892/mmr.2019.10412