Identification of differentially expressed genes in pancreatic ductal adenocarcinoma and normal pancreatic tissues based on microarray datasets
- Authors:
- Liying Liu
- Siqi Wang
- Chunyuan Cen
- Shuyi Peng
- Yan Chen
- Xin Li
- Nan Diao
- Qian Li
- Ling Ma
- Ping Han
-
Affiliations: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Advanced Application Team, GE Healthcare, Shanghai 201203, P.R. China - Published online on: June 24, 2019 https://doi.org/10.3892/mmr.2019.10414
- Pages: 1901-1914
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Crane CH, Varadhachary GR, Yordy JS, Staerkel GA, Javle MM, Safran H, Haque W, Hobbs BD, Krishnan S, Fleming JB, et al: Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: Correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol. 29:3037–3043. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N and Depinho RA: Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 20:1218–1249. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H and Kleeff J: Preoperative/neoadjuvant therapy in pancreatic cancer: A systematic review and meta-analysis of response and resection percentages. PLoS Med. 7:e10002672010. View Article : Google Scholar : PubMed/NCBI | |
Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M and Yonezawa S: Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg. 14:243–254. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, Anagnostou V, Parpart-Li S, Murphy D, Kay Li Q, et al: Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 6:76862015. View Article : Google Scholar : PubMed/NCBI | |
Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M, Goodman SN, Sohn TA, Hruban RH, Yeo CJ and Kern SE: Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 57:1731–1734. 1997.PubMed/NCBI | |
Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D and DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20:3130–3146. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fong ZV and Winter JM: Biomarkers in pancreatic cancer: Diagnostic, prognostic, and predictive. Cancer J. 18:530–538. 2012. View Article : Google Scholar : PubMed/NCBI | |
Poruk KE, Gay DZ, Brown K, Mulvihill JD, Boucher KM, Scaife CL, Firpo MA and Mulvihill SJ: The clinical utility of CA 19-9 in pancreatic adenocarcinoma: Diagnostic and prognostic updates. Curr Mol Med. 13:340–351. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim SM, Kwon IJ, Myoung H, Lee JH and Lee SK: Identification of human papillomavirus (HPV) subtype in oral cancer patients through microarray technology. Eur Arch Otorhinolaryngol. 275:535–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gunel T, Hosseini MK, Gumusoglu E, Kisakesen HI, Benian A and Aydinli K: Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology. Placenta. 52:77–85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiao X, Wang H, Wang X, Zhao B and Liu J: Microarray technology reveals potentially novel genes and pathways involved in non-functioning pituitary adenomas. Balkan J Med Genet. 19:5–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li G, Li X, Yang M, Xu L, Deng S and Ran L: Prediction of biomarkers of oral squamous cell carcinoma using microarray technology. Sci Rep. 7:421052017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Wang S, Zhou F, Shi S, Feng X, et al: LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 63:1700–1710. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramasamy A, Mondry A, Holmes CC and Altman DG: Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 5:e1842008. View Article : Google Scholar : PubMed/NCBI | |
Rung J and Brazma A: Reuse of public genome-wide gene expression data. Nat Rev Genet. 14:89–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Jin F, Fan W, Liu F, Zou Y, Hu X, Xu H and Han P: Gene expression meta-analysis in diffuse low-grade glioma and the corresponding histological subtypes. Sci Rep. 7:117412017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xia Q and Lin J: Identification of the potential oncogenes in glioblastoma based on bioinformatic analysis and elucidation of the underlying mechanisms. Oncol Rep. 40:715–725. 2018.PubMed/NCBI | |
Xiao W, Pacyna-Gengelbach M, Schluns K, An Q, Gao Y, Cheng S and Petersen I: Differentially expressed genes associated with human lung cancer. Oncol Rep. 14:229–234. 2005.PubMed/NCBI | |
Tang F, He Z, Lei H, Chen Y, Lu Z, Zeng G and Wang H: Identification of differentially expressed genes and biological pathways in bladder cancer. Mol Med Rep. 17:6425–6434. 2018.PubMed/NCBI | |
Peng C, Ma W, Xia W and Zheng W: Integrated analysis of differentially expressed genes and pathways in triplenegative breast cancer. Mol Med Rep. 15:1087–1094. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Ma X, Shen J, Yin F, Wang C and Cai Z: Bioinformatics analysis of differentially expressed pathways related to the metastatic characteristics of osteosarcoma. Int J Mol Med. 38:466–474. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, Villanueva A, Newell P, Ikeda K, Hashimoto M, et al: Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69:7385–7392. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Zhang Z, Tang Y, Chen X and Zhou J: Identification of potential target genes in pancreatic ductal adenocarcinoma by bioinformatics analysis. Oncol Lett. 16:2453–2461. 2018.PubMed/NCBI | |
Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, et al: AJCC Cancer Staging Manual. 8th. Springer International Publishing; New York, NY: 2017, View Article : Google Scholar | |
Xia J, Fjell CD, Mayer ML, Pena OM, Wishart DS and Hancock RE: INMEX-a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res. 41:W63–W70. 2013. View Article : Google Scholar : PubMed/NCBI | |
Johnson WE, Li C and Rabinovic A: Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics. 8:118–127. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cochran WG: The combination of estimates from different experiments. Biometrics. 10:101–129. 1954. View Article : Google Scholar | |
Marot G, Foulley JL, Mayer CD and Jaffrézic F: Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics. 25:2692–2699. 2009. View Article : Google Scholar : PubMed/NCBI | |
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS and Lynn DJ: InnateDB: Systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Res. 41:D1228–D1233. 2013. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Badea L, Herlea V, Dima SO, Dumitrascu T and Popescu I: Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 55:2016–2027. 2008.PubMed/NCBI | |
Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z and Wang L: FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 16:259–266. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Schetter A, He P, Funamizu N, Gaedcke J, Ghadimi BM, Ried T, Hassan R, Yfantis HG, Lee DH, et al: DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLos One. 7:e315072012. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Maitra A, et al: Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res. 19:4983–4993. 2013. View Article : Google Scholar : PubMed/NCBI | |
Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Calvopina JH, Patel SG, Wu N, Hindoyan A, Farrell JJ, et al: Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res. 18:1352–1363. 2012. View Article : Google Scholar : PubMed/NCBI | |
Crnogorac-Jurcevic T, Chelala C, Barry S, Harada T, Bhakta V, Lattimore S, Jurcevic S, Bronner M, Lemoine NR and Brentnall TA: Molecular analysis of precursor lesions in familial pancreatic cancer. PLos One. 8:e548302013. View Article : Google Scholar : PubMed/NCBI | |
Park M, Kim M, Hwang D, Park M, Kim WK, Kim SK, Shin J, Park ES, Kang CM, Paik YK and Kim H: Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas. Mod Pathol. 27:580–593. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, Yameen S, Carter RC, McKay CJ, Spoletini G, et al: IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget. 5:11064–11080. 2014. View Article : Google Scholar : PubMed/NCBI | |
Janky R, Binda MM, Allemeersch J, Van den Broeck A, Govaere O, Swinnen JV, Roskams T, Aerts S and Topal B: Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma. BMC Cancer. 16:6322016. View Article : Google Scholar : PubMed/NCBI | |
Jha PK, Vijay A, Sahu A and Ashraf MZ: Comprehensive gene expression meta-analysis and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders. Sci Rep. 6:370992016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ning Y and Guo X: Integrative meta-analysis of differentially expressed genes in osteoarthritis using microarray technology. Mol Med Rep. 12:3439–3445. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB and Von Hoff DD: Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res. 62:2890–2896. 2002.PubMed/NCBI | |
Lu KH, Patterson AP, Wang L, Marquez RT, Atkinson EN, Baggerly KA, Ramoth LR, Rosen DG, Liu J, Hellstrom I, et al: Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res. 10:3291–3300. 2004. View Article : Google Scholar : PubMed/NCBI | |
Laughlin KM, Luo D, Liu C, Shaw G, Warrington KH Jr, Qiu J, Yachnis AT and Harrison JK: Hematopoietic- and neurologic-expressed sequence 1 expression in the murine GL261 and high-grade human gliomas. Pathol Oncol Res. 15:437–444. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Xu B, Lu S, Zhao Y and Liu P: HN1 contributes to migration, invasion, and tumorigenesis of breast cancer by enhancing MYC activity. Mol Cancer. 16:902017. View Article : Google Scholar : PubMed/NCBI | |
Varisli L, Ozturk BE, Akyuz GK and Korkmaz KS: HN1 negatively influences the β-catenin/E-cadherin interaction, and contributes to migration in prostate cells. J Cell Biochem. 116:170–178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ramirez NE, Zhang Z, Madamanchi A, Boyd KL, O'Rear LD, Nashabi A, Li Z, Dupont WD, Zijlstra A and Zutter MM: The α2β1 integrin is a metastasis suppressor in mouse models and human cancer. J Clin Invest. 121:226–237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Robertson JH, Yang SY, Winslet MC and Seifalian AM: Functional blocking of specific integrins inhibit colonic cancer migration. Clin Exp Metastasis. 26:769–780. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shimoyama S, Gansauge F, Gansauge S, Oohara T and Beger HG: Altered expression of extracellular matrix molecules and their receptors in chronic pancreatitis and pancreatic adenocarcinoma in comparison with normal pancreas. Int J Pancreatol. 18:227–234. 1995.PubMed/NCBI | |
Li Y, Wagner ER, Yan Z, Wang Z, Luther G, Jiang W, Ye J, Wei Q, Wang J, Zhao L, et al: The calcium-binding protein S100A6 accelerates human osteosarcoma growth by promoting cell proliferation and inhibiting osteogenic differentiation. Cell Physiol Biochem. 37:2375–2392. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang XH, Zhang LH, Zhong XY, Xing XF, Liu YQ, Niu ZJ, Peng Y, Du H, Zhang GG, Hu Y, et al: S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer. Am J Pathol. 177:586–597. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maelandsmo GM, Florenes VA, Mellingsaeter T, Hovig E, Kerbel RS and Fodstad O: Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer. 74:464–469. 1997. View Article : Google Scholar : PubMed/NCBI | |
He X, Xu X, Khan AQ and Ling W: High expression of S100A6 predicts unfavorable prognosis of lung squamous cell cancer. Med Sci Monit. 23:5011–5017. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ohuchida K, Mizumoto K, Ishikawa N, Fujii K, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M and Tanaka M: The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Clin Cancer Res. 11:7785–7793. 2005. View Article : Google Scholar : PubMed/NCBI | |
Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ, Misek DE, Kuick R and Hanash S: Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 63:2649–2657. 2003.PubMed/NCBI | |
Okada Y, Yamazaki H, Sekine-Aizawa Y and Hirokawa N: The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 81:769–780. 1995. View Article : Google Scholar : PubMed/NCBI | |
De S, Cipriano R, Jackson MW and Stark GR: Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res. 69:8035–8042. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hattori Y, Kanamoto N, Kawano K, Iwakura H, Sone M, Miura M, Yasoda A, Tamura N, Arai H, Akamizu T, et al: Molecular characterization of tumors from a transgenic mouse adrenal tumor model: Comparison with human pheochromocytoma. Int J Oncol. 37:695–705. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brait M, Loyo M, Rosenbaum E, Ostrow KL, Markova A, Papagerakis S, Zahurak M, Goodman SM, Zeiger M, Sidransky D, et al: Correlation between BRAF mutation and promoter methylation of TIMP3, RARbeta2 and RASSF1A in thyroid cancer. Epigenetics. 7:710–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
Osipovich AB, Jennings JL, Lin Q, Link AJ and Ruley HE: Dyggve-Melchior-Clausen syndrome: Chondrodysplasia resulting from defects in intracellular vesicle traffic. Proc Natl Acad Sci U S A. 105:16171–16176. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dimitrov A, Paupe V, Gueudry C, Sibarita JB, Raposo G, Vielemeyer O, Gilbert T, Csaba Z, Attie-Bitach T, Cormier-Daire V, et al: The gene responsible for Dyggve-Melchior-Clausen syndrome encodes a novel peripheral membrane protein dynamically associated with the Golgi apparatus. Hum Mol Genet. 18:440–453. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Hong Y, Zhang K, Wang J, Zheng L, Zhang Z, Hu Z, Han X, Han Y, Chen T, et al: BAG-1M co-activates BACE1 transcription through NF-κB and accelerates Aβ production and memory deficit in Alzheimer's disease mouse model. Biochim Biophys Acta Mol Basis Dis. 1863:2398–2407. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Hao Y, Xia N, Wang J, Quintero M, Li D and Zhou F: Sensitive and continuous screening of inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem. 85:3660–3666. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Liu X, Xu L, Wang Y, Wang S, Li Q, Huang Y and Liu T: Long non-coding RNA BACE1-AS is a novel target for anisomycin-mediated suppression of ovarian cancer stem cell proliferation and invasion. Oncol Rep. 35:1916–1924. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B, et al: HMGA2-FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res. 23:3461–3473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Yang Z, Liu Z, Miao X, Yang L, Li D, Zou Q and Yuan Y: Glypican-3 and KRT19 are markers associating with metastasis and poor prognosis of pancreatic ductal adenocarcinoma. Cancer Biomark. 17:397–404. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dugnani E, Sordi V, Pellegrini S, Chimienti R, Marzinotto I, Pasquale V, Liberati D, Balzano G, Doglioni C, Reni M, et al: Gene expression analysis of embryonic pancreas development master regulators and terminal cell fate markers in resected pancreatic cancer: A correlation with clinical outcome. Pancreatology. 18:945–953. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li CF, Chuang IC, Liu TT, Chen KC, Chen YY, Fang FM, Li SH, Chen TJ, Yu SC, Lan J and Huang HY: Transcriptomic reappraisal identifies MGLL overexpression as an unfavorable prognosticator in primary gastrointestinal stromal tumors. Oncotarget. 7:49986–49997. 2016.PubMed/NCBI | |
Caba O, Irigoyen A, Jimenez-Luna C, Benavides M, Ortuño FM, Gallego J, Rojas I, Guillen-Ponce C, Torres C, Aranda E and Prados J: Identification of gene expression profiling associated with erlotinib-related skin toxicity in pancreatic adenocarcinoma patients. Toxicol Appl Pharmacol. 311:113–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wintgens JP, Wichert SP, Popovic L, Rossner MJ and Wehr MC: Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays. Cell Mol Life Sci. 76:1185–1199. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR Jr and Bottaro DP: Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs. 17:13–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Xu Y, Ge H, Xing B, Li G, Li G and Wu J: miR-564 inhibits hepatocellular carcinoma cell proliferation and invasion by targeting the GRB2-ERK1/2-AKT axis. Oncotarget. 8:107543–107557. 2017. View Article : Google Scholar : PubMed/NCBI | |
Birchmeier C, Birchmeier W, Gherardi E and Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu X, Zhang T, Wen C, Shi M, Tang X, Chen H, Peng C, Li H, Fang Y, et al: mir-329 restricts tumor growth by targeting grb2 in pancreatic cancer. Oncotarget. 7:21441–21453. 2016.PubMed/NCBI | |
Witt O, Deubzer HE, Milde T and Oehme I: HDAC family: What are the cancer relevant targets? Cancer Lett. 277:8–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P, Deubzer HE, Lodrini M, Taylor MD, von Deimling A, et al: HDAC5 and HDAC9 in medulloblastoma: Novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res. 16:3240–3252. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li A, Liu Z, Li M, Zhou S, Xu Y, Xiao Y and Yang W: HDAC5, a potential therapeutic target and prognostic biomarker, promotes proliferation, invasion and migration in human breast cancer. Oncotarget. 7:37966–37978. 2016.PubMed/NCBI | |
Klieser E, Urbas R, Stättner S, Primavesi F, Jäger T, Dinnewitzer A, Mayr C, Kiesslich T, Holzmann K, Di Fazio P, et al: Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome. Hum Pathol. 65:41–52. 2017. View Article : Google Scholar : PubMed/NCBI | |
He P, Liang J, Shao T, Guo Y, Hou Y and Li Y: HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int J Clin Exp Med. 8:6510–6516. 2015.PubMed/NCBI | |
Ozdağ H, Teschendorff AE, Ahmed AA, Hyland SJ, Blenkiron C, Bobrow L, Veerakumarasivam A, Burtt G, Subkhankulova T, Arends MJ, et al: Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics. 7:902006. View Article : Google Scholar : PubMed/NCBI |