1
|
Zarjou A and Agarwal A: Sepsis and acute
kidney injury. J Am Soc Nephrol. 22:999–1006. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Emlet AD, Shaw AD and Kellum JA:
Sepsis-associated AKI: Epithelial cell dysfunction. Semin Nephrol.
35:85–95. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mårtensson RB and Bellomo R:
Sepsis-induced acute kidney injury. Crit Care Clin. 31:649–660.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zarbock A, Gomez H and Kellum JA:
Sepsis-induced acute kidney injury revisited: Pathophysiology,
prevention and future therapies. Curr Opin Crit Care. 20:588–595.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gotts JE and Matthay MA: Sepsis:
Pathophysiology and clinical management. BMJ. 353:i15852016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Stasi A, Intini A, Divella C, Franzin R,
Montemurno E, Grandaliano G, Ronco C, Fiaccadori E, Pertosa GB,
Gesualdo and LCastellano G: Emerging role of lipopolysaccharide
binding protein in sepsis-induced acute kidney injury. Nephrol Dial
Transplant. 32:24–31. 2017.PubMed/NCBI
|
7
|
Plotnikov EY, Brezgunova AA, Pevzner IB,
Zorova LD, Manskikh VN, Popkov VA, Silachev DN and Zorov DB:
Mechanisms of LPS-induced acute kidney injury in neonatal and adult
rats. Antioxidants (Basel). 7(pii): E1052018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Havasi A and Borkan SC: Apoptosis and
acute kidney injury. Kidney Int. 80:29–40. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhao H, Liu Z, Shen H, Jin S and Zhang S:
Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney
injury via suppressing inflammation, apoptosis and oxidative
stress. Eur J Pharmacol. 781:92–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rousta AM, Mirahmadi SM, Shahmohammadi A,
Nourabadi D, Khajevand-Khazaei MR, Baluchnejadmojarad T and Roghani
M: Protective effect of sesamin in lipopolysaccharide-induced mouse
model of acute kidney injury via attenuation of oxidative stress,
inflammation, and apoptosis. Immunopharmacol Immunotoxicol.
40:423–429. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Su Z, Yu P, Sheng L, Ye J and Qin Z:
Fangjifuling ameliorates lipopolysaccharide-induced renal injury
via inhibition of inflammatory and apoptotic response in mice. Cell
Physiol Biochem. 49:2124–2137. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang D, Lin J and Han J:
Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol.
7:243–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Declercq W, Vanden Berghe T and
Vandenabeele P: RIP kinases at the crossroads of cell death and
survival. Cell. 138:229–232. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Witt A and Vucic D: Diverse ubiquitin
linkages regulate RIP kinases-mediated inflammatory and cell death
signaling. Cell Death Differ. 24:1160–1171. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Meylan ET and Tschopp J: The RIP kinases:
Crucial integrators of cellular stress. Trends Biochem Sci.
30:151–159. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun X, Lee J, Navas T, Baldwin DT, Stewart
TA and Dixit VM: RIP3 a novel apoptosis inducing kinase. J Biol
Chem. 274:16871–16875. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pazdernik NJ, Donner DB, Goebl MG and
Harrington MA: Mouse receptor interacting protein 3 does not
contain a caspase recruiting or a death domain but induces
apoptosis and activates NF-kappaB. Mol Cell Biol. 19:6500–6508.
1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kasof GM, Prosser JC, Liu D, Lorenzi MV
and Gomes BC: The RIP-like kinase, RIP3, induces apoptosis and
NF-kappaB nuclear translocation and localizes to mitochondria. FEBS
Lett. 473:285–291. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Feng S, Ma L, Yang Y and Wu M: Truncated
RIP3 (tRIP3) acts upstream of FADD to induce apoptosis in the human
hepatocellular carcinoma cell line QGY-7703. Biochem Biophys Res
Commun. 347:558–565. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z,
Wang Y, Huang Z, Ren J, Liu S, et al: A role for tubular
necroptosis in cisplatin-induced AKI. J Am Soc Nephrol.
26:2647–2658. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sureshbabu A, Patino E, Ma KC, Laursen K,
Finkelsztein EJ, Akchurin O, Muthukumar T, Ryter SW, Gudas L, Choi
AMK and Choi ME: RIPK3 promotes sepsis-induced acute kidney injury
via mitochondrial dysfunction. JCI Insight. 3(pii): 984112018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Shashaty MG, Reilly JP, Sims CA, Holena
DN, Qing D, Forker CM, Hotz MJ, Meyer NJ, Lanken PN, Feldman HI, et
al: Plasma levels of receptor interacting protein kinase-3 (RIP3),
an essential mediator of necroptosis, are associated with acute
kidney injury in critically Ill trauma patients. Shock. 46:139–143.
2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Brooks C, Wei Q, Cho SG and Dong Z:
Regulation of mitochondrial dynamics in acute kidney injury in cell
culture and rodent models. J Clin Invest. 119:1275–1285. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Schmittgen TD and Livak KJ: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lerolle N, Nochy D, Guérot E, Bruneval P,
Fagon JY, Diehl JL and Hill G: Histopathology of septic shock
induced acute kidney injury: Apoptosis and leukocytic infiltration.
Intensive Care Med. 36:471–478. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shi M, Zeng X, Guo F, Huang R, Feng Y, Ma
L, Zhou L and Fu P: Anti-inflammatory pyranochalcone derivative
attenuates LPS-induced acute kidney injury via inhibiting
TLR4/NF-kappaB pathway. Molecules. 22(pii): E16832017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakano D, Doi K, Kitamura H, Kuwabara T,
Mori K, Mukoyama M and Nishiyama A: Reduction of tubular flow rate
as a mechanism of oliguria in the early phase of endotoxemia
revealed by intravital imaging. J Am Soc Nephrol. 26:3035–3044.
2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Watts BA III, George T, Sherwood ER and
Good DW: Monophosphoryl lipid a induces protection against LPS in
medullary thick ascending limb through a TLR4-TRIF-PI3K signaling
pathway. Am J Physiol Renal Physiol. 313:F103–F115. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun L, Wang H, Wang Z, He S, Chen S, Liao
D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase
domain-like protein mediates necrosis signaling downstream of RIP3
kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cho YS, Challa S, Moquin D, Genga R, Ray
TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the
RIP1-RIP3 complex regulates programmed necrosis and virus-induced
inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Linkermanna A, Bräsen JH, Dardingd M, Jin
MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H,
et al: Two independent pathways of regulated necrosis mediate
ischemia-reperfusion injury. Proc Natl Acad Sci USA.
110:12024–12029. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu W, Chen B, Wang Y, Meng C, Huang H,
Huang XR, Qin J, Mulay SR, Anders HJ, Qiu A, et al: RGMb protects
against acute kidney injury by inhibiting tubular cell necroptosis
via an MLKL-dependent mechanism. Proc Natl Acad Sci USA.
115:E1475–E1484. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
von Mässenhausen A, Tonnus W, Himmerkus N,
Parmentier S, Saleh D, Rodriguez D, Ousingsawat J, Ang RL, Weinberg
JM, Sanz AB, et al: Phenytoin inhibits necroptosis. Cell Death Dis.
9:3592018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kaiser WJ, Sridharan H, Huang C, Mandal P,
Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES:
Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J
Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Newton K, Dugger DL, Wickliffe KE, Kapoor
N, de Almagro MC, Vucic D, Komuves L, Ferrando RE, French DM,
Webster J, et al: Activity of protein kinase RIPK3 determines
whether cells die by necroptosis or apoptosis. Science.
343:1357–1360. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yabal M, Muller N, Adler H, Knies N, Groß
CJ, Damgaard RB, Kanegane H, Ringelhan M, Kaufmann T, Heikenwälder
M, et al: XIAP restricts TNF- and RIP3-dependent cell death and
inflammasome activation. Cell Rep. 7:1796–1808. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lawlor KE, Khan N, Mildenhall A, Gerlic M,
Croker BA, D'Cruz AA, Hall C, Kaur Spall S, Anderton H, Masters SL,
et al: RIPK3 promotes cell death and NLRP3 inflammasome activation
in the absence of MLKL. Nat Commun. 6:62822015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wicki S, Gurzeler U, Wei-Lynn Wong, Jost
PJ, Bachmann D and Kaufmann T: Loss of XIAP facilitates switch to
TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis.
7:e24222016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Upton JW, Kaiser WJ and Mocarski ES: Virus
inhibition of RIP3-dependent necrosis. Cell Host Microbe.
7:302–313. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Vandenabeele P, Declercq W, Van Herreweghe
F and Vanden Berghe T: The role of the kinases RIP1 and RIP3 in
TNF-induced necrosis. Sci Signal. 3:re42010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mandal P, Berger SB, Pillay S, Moriwaki K,
Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, et al:
RIP3 induces apoptosis independent of pronecrotic kinase activity.
Mol Cell. 56:481–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kroemer D: The pathophysiology of
mitochondrial cell death. Science. 305:626–629. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bhatt K, Feng L, Pabla N, Liu K, Smith S
and Dong Z: Effects of targeted Bcl-2 expression in mitochondria or
endoplasmic reticulum on renal tubular cell apoptosis. Am J Physiol
Renal Physiol. 294:F499–F507. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bleicken S, Classen M, Padmavathi PV,
Ishikawa T, Zeth K, Steinhoff HJ and Bordignon E: Molecular details
of Bax activation, oligomerization, and membrane insertion. J Biol
Chem. 285:6636–6647. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wei Q, Dong G, Franklin J and Dong Z: The
pathological role of Bax in cisplatin nephrotoxicity. Kidney Int.
72:53–62. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wei Q, Dong G, Chen JK, Ramesh G and Dong
Z: Bax and bak have critical roles in ischemic acute kidney injury
in global and proximal tubule-specific knockout mouse models.
Kidney Int. 84:138–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhou Y, Li Y, Zhou B, Chen K, Lyv Z, Huang
D, Liu B, Xu Z, Xiang B, Jin S, et al: Inflammation and apoptosis:
Dual mediator role for toll-like receptor 4 in the development of
necrotizing enterocolitis. Inflamm Bowel Dis. 23:44–56. 2017.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu PY, Chang DC, Lo YS, His YT, Lin CC,
Chuang YC, Lin SH, Hsieh MJ and Chen MK: Osthole induces human
nasopharyngeal cancer cells apoptosis through fas-fas ligand and
mitochondrial pathway. Environ Toxicol. 33:446–453. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zielinska E, Zauszkiewicz-Pawlak A, Wojcik
M and Inkielewicz-Stepniak I: Silver nanoparticles of different
sizes induce a mixed type of programmed cell death in human
pancreatic ductal adenocarcinoma. Oncotarget. 9:4675–4697.
2017.PubMed/NCBI
|